AV1 for RTC Use Cases Across Meta Family of Apps

Yu-Chen (Eric) Sun software engineer@meta

Video @ Real-time Communication Products

Low power consumption

AV1 P2P Call on Messenger

H264/AVC @100k

AV1 @100k

AV1 P2P Call on Messenger

H264/AVC @50k

AV1 @50k

Launch AV1 on Large Scale RTC Apps

Challenges and Solutions

Conclusion / Takeaways

Launch AVI on Large Scale RTC Apps

Quantitative Improvements

BD-Rate wins

User feedback wins

screen_3342x2160-7.yuv psnr_a by actual_bitrate 38 -36 34 dB 32 OpenH264 Libaom-AV1 v3.6.0 speed=7 30 -Libaom-AV1 v3.6.0 speed=8 Libaom-AV1 v3.6.0 speed=9 28 -Libaom-AV1 v3.6.0 speed=10 2500 3000 1500 2000 1000 500 kbps

AV1 Wins in RTC

Better compression efficiency

Quickly adapt to the network during a call

Special RTC scenario, e.g., screen sharing

Challenges and Mitigations Desktop v.s. Mobile

Challenge 1: Binary Size Increase

AV1 support (libaom) will add more than 1 MB to your application, or more than 500 kB when compressed for distribution

Mitigation for Challenge 1: Binary Size Increase

Dynamic download framework

2 Optimize library binary size : ~ 30k~60k reduction

3 System level optimization

Challenge for Increasing AV1 Coverage: More Power and More Memory Usage

Power increase (14%) compared with Openh264

Memory usage increase

Solution to Challenge 2: More Power and More Memory Usage

High-end device list iPhone list is easy, but Android is challenging

Memory usage increase 2

Codec switch based on rate/resolution/device heath 3 measurement

AVI Encoder Power Tests

Software Encoding

Encoder	Power
Openh264	100% (Anchor)
Libaom	114%

Hardware Encoding

Pixel 8 HW AV1 87%

Challenge 3 and Solutions: AVI Quality Optimization

- CPU preset tuning
- Rate control tuning 2
- Resolution tuning and enabling RPR 3
- Encoding algorithm optimization 4

System optimization (packetization, network resilience) 5

Conclusion / Takeaways

Good industry moment to adopt AV1 in RTC

2 Low complexity AV1 software encoder

3 Hardware AV1 encoder support is important

4 Potentially helpful hints for Improving next generation AOM codec

Get Involved!

Thank you.

In-Product Quality Measurement

Challenge of In-product Quality Measurement

We need an in-product quality measurement

Low complexity

PSNR metric

Proposed In-product Quality Measurement

"Low-Complexity Video PSNR Measurement in Real-Time Communication Products" ICME2024

Meta is Looking for Collaboration

HW encoder coverage

- Apple recently announced the new PSNR API support on iOS 17.4+.
- We are looking for industry collaboration on adding this in the Android eco-system.

looking forward to collaboration opportunities

We are preparing to contribute this method to WebRTC and

Conclusion / Takeaways

Good industry moment to adopt AV1 in RTC

In-product quality measurement is critical 2

Low complexity AV1 software encoder 3

Hardware AV1 encoder support is important 4

5 codec

Potentially helpful hints for Improving next generation AOM