
 

 

 

Alliance for Open Media 

Codec Working Group 

Document: CWG-B078[o]_v1 

Tool Description for AV1 and libaom 

Date:  October 4, 2021 

Status:  Output document 

Purpose: Information 

Author(s): Xin Zhao, Shan Liu, Adrian Grange, Andrey Norkin 

Email(s): xinzzhao@tencent.com, shanl@tencent.com, agrange@google.com, 
anorkin@netflix.com 

Source: Tencent, Google, Netflix 

 

Abstract 

This document provides a description of the main coding features in libaom, a software 
implementation of the AV1 standard specification. Both normative decoding processes and some 
key encoder algorithms are described in this document. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CONTENTS 
Abstract ......................................................................................................................................................... 1 

1 Introduction ........................................................................................................................................ 3 

2 Abbreviations ...................................................................................................................................... 4 

3 Tool description .................................................................................................................................. 4 

3.1 Block partitioning .......................................................................................................................... 4 

3.1.1 Coding block partitioning ...................................................................................................... 4 

3.1.2 Transform block partitioning ................................................................................................ 5 

3.2 Intra prediction ............................................................................................................................. 7 

3.2.1 Directional intra prediction ................................................................................................... 7 

3.2.2 Non-directional intra prediction ........................................................................................... 8 

3.2.3 Recursive intra prediction ..................................................................................................... 9 

3.2.4 Chroma from luma prediction ............................................................................................ 10 

3.2.5 Intra prediction mode signalling ......................................................................................... 10 

3.3 Inter prediction ........................................................................................................................... 11 

3.3.1 Reference frame system ..................................................................................................... 11 

3.3.2 Spatial motion vector prediction ........................................................................................ 12 

3.3.3 Temporal motion vector prediction .................................................................................... 14 

3.3.4 Dynamic motion vector prediction ..................................................................................... 15 

3.3.5 Inter prediction mode signalling ......................................................................................... 16 

3.3.6 Translational motion compensation ................................................................................... 18 

3.3.7 Warped motion compensation ........................................................................................... 21 

3.3.8 Overlapped block motion compensation............................................................................ 23 

3.3.9 Compound inter prediction................................................................................................. 24 

3.3.10 Compound inter–intra prediction ....................................................................................... 25 

3.4 Transform coding ........................................................................................................................ 26 

3.4.1 Core transforms .................................................................................................................. 26 

3.4.2 Transform selection and signalling ..................................................................................... 27 

3.5 Quantization................................................................................................................................ 29 

3.6 Entropy coding ............................................................................................................................ 31 

3.6.1 Multisymbol arithmetic coding engine ............................................................................... 31 

3.6.2 Coefficient coding ............................................................................................................... 31 

3.7 Loop filtering and post-processing.............................................................................................. 32 

3.7.1 Deblocking filter .................................................................................................................. 32 

3.7.2 Constrained directional enhancement filter ....................................................................... 33 

3.7.3 Loop restoration filter ......................................................................................................... 35 

3.7.4 Frame super-resolution ...................................................................................................... 36 

3.7.5 Film grain synthesis ............................................................................................................. 36 

3.8 Screen content coding ................................................................................................................ 37 

3.8.1 Intra block copy ................................................................................................................... 37 

3.8.2 Palette mode ....................................................................................................................... 39 

3.8.3 Encoder content-type detection ......................................................................................... 40 

4 References ........................................................................................................................................ 40 

 



 

 

1 Introduction 

The framework of the Alliance for Open Media Video 1 (AV1) codec is based on a hybrid video 
coding structure that consists of a few major function blocks, such as prediction, transform, 
quantization, entropy coding, and loop filtering. Each function block processes the input data 
using a certain type of video coding technology, and its output is fed into another function block 
or taken as the final output of the video codec. These function blocks are connected following a 
specific design and work collaboratively to achieve substantial data compression. The function 
blocks included in AV1 reference codec libaom [1] are summarized as follows and described in 
detail in Section 3. 

• Block partitioning 

- Coding block partitioning [2] 

- Transform block partitioning [2] 

• Intra prediction 

- Directional intra prediction [2] 

- Non-directional intra prediction [2] 

- Recursive intra prediction [2] 

- Chroma from luma (CfL) prediction [3] 

- Intra prediction mode signalling 

• Inter prediction 

- Reference frame system [2] 

- Spatial motion vector prediction 

- Temporal motion vector prediction 

- Dynamic motion vector prediction [4] 

- Inter prediction mode signalling 

- Translational motion compensation 

- Warped motion compensation [5] 

- Overlapped block motion compensation [6] 

- Compound inter prediction 

- Compound inter-intra prediction 

• Transform coding 

- Core transforms 

- Transform selection and signalling 

• Quantization 

• Entropy coding 

- Multi-symbol arithmetic coding engine [8] 

- Coefficient coding [9] 

• Loop filtering and post-processing 

- Deblocking filter 

- Constrained directional enhancement filter [10] 

- Loop restoration filter [11] 

- Frame super-resolution 

- Film grain synthesis [12] 

• Screen content coding 

- Intra block copy [13]  



 

 

- Palette mode 

- Encoder content-type detection 

The coding features described for each building block are all included in the libaom [1] 
implementation of AV1 codec. 

In this document, syntax elements are written using Courier font, e.g., syntax element 

base_q_idx. 

 

2 Abbreviations 

For the purposes of this document, the following abbreviations apply: 

ARF alternate reference frame 

AV1 AOMedia Video 1 

BV block vector 

CDEF constrained directional enhancement filter 

CfL chroma from luma 

DRL dynamic reference list 

EOB end of block 

FIR finite impulse response 

IntraBC intra block copy 

LR loop restoration 

LRU loop restoration unit 

MV motion vector 

OBMC overlapped block motion compensation 

SGF self-guided filter 

 

3 Tool description 

3.1 Block partitioning 

3.1.1 Coding block partitioning 

Coding blocks of different sizes are used in AV1. The largest coding blocks, called superblocks, 
have sizes of either 128×128 or 64×64, with the default size being 128×128. The size is signalled 
in the sequence header. The minimum coding block size is 4×4.  

Superblocks can be further partitioned into smaller coding blocks. The partitioning strategy is 
signalled in the bitstream. Besides the no-partitioning mode, PARTITION_NONE, there are up to 
nine supported partitioning modes (see Figure 1). These include three 4-partition modes: 
PARTITION_SPLIT, PARTITION_VERT_4, and PARTITION_HORZ_4; four 3-partition (T-
shaped) modes: PARTITION_HORZ_A, PARTITION_HORZ_B, PARTITION_VERT_A, and 
PARTITION_VERT_B; and two 2-partition modes: PARTITION_HORZ and PARTITION_VERT. 



 

 

 

Figure 1: Coding block partitioning modes 

Among all the partitioning modes, only PARTITION_SPLIT allows recursive partitioning; that is, 
the subpartitions can be further partitioned. For all other partitioning modes, the subpartitions 
cannot be further partitioned. Furthermore, PARTITION_VERT_4 and PARTITION_HORZ_4 
modes are not allowed for 8×8 or 128×128 block sizes, and T-shaped partitioning modes are not 
allowed for 8×8 blocks. 

3.1.2 Transform block partitioning  

Both intra and inter coding blocks can be further partitioned into multiple transform blocks, with a 
partitioning depth of up to two levels. The transform block size is determined by the transform 
partitioning mode and the coding block size. The mapping from the transform size of the current 
depth to the transform size of the next depth is shown in Table 1. 

Table 1: Transform partitioning size setting 

Current depth Next depth 

Enumerator Transform size Enumerator Transform size 

TX_4X4 4×4 TX_4X4 4×4 

TX_8X8 8×8 TX_4X4 4×4 

TX_16X16 16×16 TX_8X8 8×8 

TX_32X32 32×32 TX_16X16 16×16 

TX_64X64 64×64 TX_32X32 32×32 

TX_4X8 4×8 TX_4X4 4×4 

TX_8X4 8×4 TX_4X4 4×4 

TX_8X16 8×16 TX_8X8 8×8 

TX_16X8 16×8 TX_8X8 8×8 



 

 

TX_16X32 16×32 TX_16X16 16×16 

TX_32X16 32×16 TX_16X16 16×16 

TX_32X64 32×64 TX_32X32 32×32 

TX_64X32 64×32 TX_32X32 32×32 

TX_4X16 4×16 TX_4X8 4×8 

TX_16X4 16×4 TX_8X4 8×4 

TX_8X32 8×32 TX_8X16 8×16 

TX_32X8 32×8 TX_16X8 16×8 

TX_16X64 16×64 TX_16X32 16×32 

TX_64X16 64×16 TX_32X16 32×16 

The transform types in Table 1 can be generalized as follows. For 1:1 square blocks, transform 
partitioning of the next level will create four 1:1 square transform blocks. For 1:2 or 2:1 non-square 
blocks, transform partitioning of the next level will create two 1:1 square transform blocks. Finally, 
for 1:4 or 4:1 non-square blocks, transform partitioning of the next level will create two 1:2 or 2:1 
transform blocks, respectively. 

For the luma colour component of intra coding blocks, all the transform blocks must have equal 
size. For example, for a 32×16 coding block, level 1 transform partitioning would create two 16×16 
transform blocks, and level 2 transform partitioning would create eight 8×8 transform subblocks. 
An example of transform block partitioning for intra coding blocks is shown in Figure 2. The coding 
order of transform blocks is illustrated by arrows. 

 

Figure 2: Example of transform partitioning for intra coding block 

For the luma colour component of inter coding blocks, after level 1 transform partitioning, each 
subblock can be partitioned independently in level 2. Therefore, inter coding blocks can have 
variable transform block sizes, as shown in Figure 3. 



 

 

 

Figure 3: Example of transform partitioning for inter coding block 

For the chroma colour components, the transform block size is the same as the corresponding 
chroma coding block size, except that when the chroma coding block width or heigh is greater 
than 32, the chroma transform block width or height is set equal to 32. 

If the coding block size is smaller than or equal to 64×64, the above transform block partitioning 
scheme starts from the coding block size. However, if the coding block width W or height H is 
greater than 64 in terms of luma samples, it is first implicitly partitioned into multiples of min(W, 
64)×min(H, 64) subblocks. No signalling is required for this step. Thereafter, starting from each 
min(W, 64)×min(H, 64) subblock, the transform block partitioning scheme described in this section 
applies, and the partitioning is explicitly signalled. For example, for a 128×64 coding block, the 
residual block is first implicitly partitioned into two 64×64 subblocks, then each 64×64 subblock 
can be further partitioned into smaller transform blocks, with the partitioning mode being explicitly 
signalled. 

3.2 Intra prediction 

3.2.1 Directional intra prediction  
Directional intra prediction is used to model local textures using a set of edge directions. There 
are eight nominal directional intra prediction modes, each of which has an associated set of angle 
delta offsets indexed as integer values between −3 and +3, with the nominal angle situated at 0. 
The prediction direction is derived by adding the angle delta to the nominal intra angle. In total, 
there are 56 directional intra prediction modes. Figure 4 shows the eight nominal modes (solid 
arrows) with an example of the set of angle delta offsets around the D67_PRED nominal mode 
(dotted arrows) when the angle delta is nonzero. 



 

 

 

Figure 4: Directional intra prediction modes. The solid arrows indicate nominal intra prediction 
modes and the dashed arrows represent intra prediction modes with non-zero angle deltas. 

Both the nominal mode and associated angle delta indices are signalled, with the nominal mode 
index signalled before the associated angle delta index. For small block sizes, i.e., 4×4, 4×8, and 
8×4, the additional coding gain from extending the intra prediction angle precision is usually 
marginal; therefore, in such cases, only the nominal mode is used, with no angle delta applied or 
signalled. 

3.2.2 Non-directional intra prediction  
In addition to the directional intra prediction modes, there are five non-directional intra prediction 
modes, DC_PRED, SMOOTH, SMOOTH_H, SMOOTH_V, and Paeth, which are usually used for 
the prediction of smooth areas. 

The DC_PRED mode generates prediction samples in the current block by averaging the 
reconstructed samples from the top and left neighbouring blocks. 

The SMOOTH_V and SMOOTH_H modes generate prediction values using quadratic 
interpolation along the vertical and horizontal directions, respectively, while the SMOOTH mode 
generates prediction values using the average of the quadratic interpolation results along both 
directions. The samples used for quadratic interpolation include reconstructed samples from the 
top and left neighbouring reconstructed blocks and samples from the right and bottom boundaries 
that are estimated by the top and left reconstructed samples. 

The Paeth prediction mode predicts each sample from its top (T), left (L), and top-left (TL) 
reference samples, as shown in Figure 5. Of these reference samples, the one with the value 
closest to the value of (T + L – TL) is selected as the prediction sample. 

      

 
 
 
 
 
 

            



 

 

 

Figure 5: Reference samples used in Paeth prediction mode 

3.2.3 Recursive intra prediction  
Five recursive intra prediction modes are defined in AV1. Each mode specifies a set of eight 7-
tap filters. Given the selected recursive intra prediction mode index (0,…,4), the current block is 
divided into multiples of 4×2 subblocks. For each 4×2 subblock, each sample is predicted by 7-
tap interpolation using the seven neighbouring samples from the top and left blocks as inputs, as 
shown in Figure 6. Different filters are applied for samples located at different coordinates within 
each 4×2 subblock. This prediction process is performed on 4×2 subblocks one by one within a 
coding block, and the prediction samples generated for each 4×2 subblock can be used to predict 
the following 4×2 subblock. An example of recursive intra prediction is shown in Figure 6. 

 

Figure 6: Illustration of recursive intra prediction mode 

 

 

   

        
     



 

 

3.2.4 Chroma from luma prediction  
Chroma from luma (CfL) is an intra prediction mode applied only to chroma coding blocks. The 
CfL prediction mode derives chroma prediction samples using their collocated reconstructed luma 
samples via a linear model. When the corresponding luma and chroma resolutions are different, 
e.g., for 4:2:0 and 4:2:2 chroma subsampling formats, the reconstructed luma samples need to 
be subsampled before feeding into the CfL mode. The prediction block is derived as the sum of 
the chroma DC contribution and the scaled luma AC contribution. The DC contribution of a block 
consists of the average value of the block, while the AC contribution is derived by removing the 
DC contribution from the block. In CfL mode, the model parameters, such as the scaling factor 
applied to the luma AC contribution, are calculated during the encoding process and signalled 
into the bitstream. A flowchart of the CfL prediction mode is presented in Figure 7. 

 

Figure 7: CfL prediction mode 

3.2.5 Intra prediction mode signalling 

For luma colour component, the intra prediction modes include the 56 directional intra prediction 

modes, 5 non-directional prediction modes, and 5 recursive filtering modes. The following process 

is used to signal the intra prediction mode for a coding block: 

• Syntax y_mode is first signalled to indicate which of the eight nominal directional intra 

prediction modes or five non-directional intra prediction modes is to be applied. 

• If the block size is greater than 8×8 and y_mode is indicating a directional intra prediction 

mode, i.e., 1,…,8, then syntax angle_delta_y is further signalled to indicate the angle 

delta index in the range of −3 to +3. 

• Otherwise, if the luma prediction mode is DC_PRED and the maximum width and height 

of the coding block is less than or equal to 32, flag use_filter_intra is signalled to 

indicate whether a recursive intra prediction mode is to be applied. 

• If use_filter_intra is signalled as 1, then filter_intra_mode is further signalled 

to indicate which of the five recursive intra prediction modes is to be applied. 

Similarly, for chroma colour components, the intra prediction modes include the 56 directional 

intra prediction modes, 5 non-directional prediction modes, and CfL prediction mode. The 

following process is used to signal the intra prediction mode for a coding block: 



 

 

• Syntax uv_mode is signalled to indicate which of the eight nominal directional intra 

prediction modes, five non-directional prediction modes, and CfL prediction mode is to be 

applied. 

• If the block size is greater than 8×8 and uv_mode is indicating a directional intra prediction 

mode, then syntax angle_delta_uv is further signalled to indicate the angle delta index 

in the range of −3 to +3. 

• Otherwise, if uv_mode is indicating the CfL mode as the intra prediction mode, a scaling 

parameter α is used, which is further signalled for Cb and Cr colour components. 

The mapping between the values of y_mode, uv_mode, and intra prediction modes is listed in 

Table 2. 

Table 2: Mapping between y_mode/uv_mode and intra prediction modes 

y_mode uv_mode Intra prediction mode 

0 0 DC_PRED 

1 1 V_PRED 

2 2 H_PRED 

3 3 D45_PRED 

4 4 D135_PRED 

5 5 D113_PRED 

6 6 D157_PRED 

7 7 D203_PRED 

8 8 D67_PRED 

9 9 SMOOTH 

10 10 SMOOTH_V 

11 11 SMOOTH_H 

12 12 Paeth 

N/A 13 CfL 

For signalling y_mode, different contexts are applied for coding blocks in intra and inter frames. 

In intra frames, the context for signalling y_mode is derived from the neighbouring luma intra 

prediction modes. In inter frames, the context for signalling y_mode is derived from the current 

coding block size. For signalling uv_mode, the context is derived using the collocated luma intra 

prediction mode. 

 

3.3 Inter prediction 

3.3.1 Reference frame system 

A maximum of eight frames can be stored in the decoded frame buffer. To code each frame, up 

to two reference frames can be selected from the decoded frame buffer for use as reference 

frames for inter prediction. Single reference inter prediction uses only one frame as the reference 

frame. Compound inter prediction uses two reference frames, and generates a prediction by 

combining two prediction blocks from these reference frames.  



 

 

Uni-directional and bi-directional compound prediction are special cases of compound inter 

prediction. Uni-directional compound prediction is when both the selected reference frames are 

either preceding or following the current frame in display order, whereas bi-directional compound 

prediction is when one reference frame precedes the current frame and the other follows the 

current frame in display order. For uni-directional compound prediction, the applicable reference 

frame combinations are limited to four combinations, whereas for bi-directional compound 

prediction, all 12 possible reference frame combinations are supported. After the coding is 

finished for one frame, the encoder decides which reference frame stored in the decoded frame 

buffer needs to be replaced, and this update is explicitly signalled in the bitstream. 

The decoded frame buffer stores four types of reference frames, namely, 1) LAST frame: a frame 

that was displayed in the near past; 2) BWD frame: a frame that will be displayed in the future; 3) 

GOLDEN frame: a frame that was displayed in the distant past; and 4) alternate reference frame 

(ARF): a frame from either the past or the future. ARFs also have the option of not being displayed. 

ARFs can be synthesized by the encoder, for example, they can be generated by temporal filtering 

along the motion trajectories of multiple original frames. 

3.3.2 Spatial motion vector prediction 

Spatial motion vector (MV) predictors can be identified by utilizing spatial neighbouring blocks, 
including adjacent spatial neighbouring blocks, which are direct neighbours of the current block 
to the top and left sides, as well as non-adjacent spatial neighbouring blocks, which are close but 
not directly adjacent to the current block. An example of a set of spatial neighbouring blocks for a 
luma block is illustrated in Figure 8, wherein each spatial neighbouring block is an 8×8 block. 

1

268

7

5

Current block
 

Figure 8: Spatial neighbouring motion for MV prediction 

The spatial neighbouring blocks are examined to find one or multiple MVs that are associated 
with the same reference frame index as the current block. For the current block, the search order 
of spatial neighbouring 8×8 luma blocks is as indicated by the numbers 1–8 in Figure 8: 

1. The top adjacent row is checked from left to right. 



 

 

2. The left adjacent column is checked from top to bottom. 
3. The top-right neighbouring block is checked. 
4. The top-left block neighbouring block is checked. 
5. The first top non-adjacent row is checked from left to right. 
6. The first left non-adjacent column is checked from top to bottom. 
7. The second top non-adjacent row is checked from left to right. 
8. The second left non-adjacent column is checked from top to bottom. 

In step 1, the bottom two 4×4 blocks of each 8×8 neighbouring block are checked. In step 2, the 

right two 4×4 blocks of each 8×8 neighbouring block are checked. In step 3, the bottom-left 4×4 

block of the top-right 8×8 neighbouring block is checked. After checking the top-right neighbouring 

block, the temporal MV predictor (described in Section 3.3.3) is checked. Thereafter, in steps 4–

8, the bottom-right 4×4 block of each 8×8 neighbouring block is checked.  

In single reference inter prediction, the spatial MV predictor is generated by identifying the spatial 
neighbouring blocks that are predicted using the same single reference frame as the current block, 
and their associated MVs are used as the spatial MV predictor, as shown in Figure 9. 

Reference frame 1Current frameReference frame 1

Current 
Block

A

 

Figure 9: Spatial MV predictor generation when both the current block and a neighbouring block 
A are predicted using the same single reference frame 

In compound prediction, when a spatial neighbouring block is predicted by the compound 
prediction mode using the same reference frames as the current block, the associated MVs can 
be used as the spatial MV predictor, as shown in Figure 10. 

A

Reference frame 1Reference frame 0

Current 
Block

Current frame
 

Figure 10: Spatial MV predictor generation when both the current block and a neighbouring 
block A are predicted using the compound prediction mode, where the reference frames of the 

neighbouring block are the same as those of the current block 

For compound prediction, which utilizes two reference frames, non-adjacent spatial neighbours 
are not checked when deriving the MV predictor. 



 

 

3.3.3 Temporal motion vector prediction 

In addition to spatial neighbouring blocks, MV predictors known as temporal MV predictors can 
also be derived using collocated blocks of reference pictures. To generate temporal MV predictors, 
the MVs of reference frames are first stored with reference indices associated with the respective 
reference frames. Thereafter, for each 8×8 block of the current frame, the MVs of a reference 
frame that pass the 8×8 block are identified and stored with the reference frame index in a 
temporal MV buffer. 

An example of this is shown in Figure 11. In this example, the MV of reference frame 1 (R1; right-
hand side of Figure 11), i.e., MVref, points from R1 to a reference frame of R1 (left-hand side of 
Figure 11). In doing so, it passes through an 8×8 block of the current frame. MVref is stored in the 
temporal MV buffer associated with this 8×8 block. During the motion projection process for 
deriving the temporal MV predictor, the reference frames are scanned in a predefined order: 
LAST_FRAME, BWDREF_FRAME, ALTREF2_FRAME, ALTREF_FRAME, and LAST2_FRAME. 
The MVs from later reference frames (in scanning order) replace the previously identified MVs. 

 

Figure 11: Motion field estimation by linear projection 

Finally, given the predefined block coordinates, the associated MVs stored in the temporal MV 
buffer are identified and projected to derive a temporal MV predictor that points from the current 
block to its reference frame, e.g., MV0 in Figure 11. In Figure 12, the pre-defined block positions 
for deriving temporal MV predictors of a 16×16 block are shown. Up to seven blocks are checked 
to find valid temporal MV predictors. The temporal MV predictors are checked after the nearest 
spatial MV predictors but before the non-adjacent spatial MV predictors. 

 

Figure 12: Block positions for deriving temporal MV predictors 

For the derivation of MV predictors, all the spatial and temporal MV candidates are pooled, and 
each predictor is assigned a weighting that is determined during the scanning of the spatial and 
temporal neighbouring blocks. Based on the associated weightings, the candidates are sorted 
and ranked, and up to four candidates are identified and added to an MV predictor list. This list of 

  

  

  

    

    



 

 

MV predictors is also referred to as a dynamic reference list (DRL), which is further used in 
dynamic MV prediction modes, as described in the next subsection. 

3.3.4 Dynamic motion vector prediction 

MVs can be predicted by either spatial neighbouring blocks in the current frame or temporal 

neighbouring blocks in a reference frame. A set of up to four MV predictors can be identified by 

checking all these blocks. For single reference inter prediction, there are separate lists of MVs for 

each reference frame. For compound inter prediction, the list of MV pairs for each reference pair 

is used to derive the MV predictors. In the bitstream for single reference prediction, a DRL index 

drl_idx is signalled to specify which of the following MV prediction modes is to be used (see 

also Figure 13): 

• NEARESTMV: Always use the 0-indexed entry from the MV predictor list. 

• NEARMV: use one of the 1, 2, or 3-indexed entries, a ternary DRL index is signalled to 

indicate which entry is used as the MV predictor. 

• NEWMV: Use the 0-, 1-, or 2-indexed entry. A ternary DRL index is signalled to indicate 

which entry is to be used as the MV predictor. An MV difference (MVD) to the MV predictor 

is signalled. 

• GLOBALMV: Use an MV based on frame-level global motion parameters as the MV 

predictor. 

MV1

MV1

MV1

MV1

MV2

MV2

MV2

MV2

MV3

MV3

MV3

MV3

NEARESTMV

NEARMV

NEWMV

MVglobalGLOBALMV

Dynamic reference list using 

single reference frame

...

...

...

...

ref1 ref2 ref3 ...

 

Figure 13: Motion vector prediction modes for single reference frame case 

For compound inter prediction modes, the DRL index drl_idx is signalled to specify which of 

the following modes is to be used (see also Figure 14): 

• NEAREST_NEARESTMV: Always use the 0-indexed MV pair from the list. 

• NEAR_NEARMV: Use the 1-, 2-, or 3-indexed MV pair signalled by a ternary DRL index. 

• NEAREST_NEWMV: Always use the 0-indexed MV pair from the list as the MV predictor. 

An MVD is signalled for the second MV. 

• NEW_NEARESTMV: Always use the 0-indexed MV pair from the list as the MV predictor. 

An MVD is signalled for the first MV. 



 

 

• NEAR_NEWMV: Use the 1-, 2-, or 3-indexed MV pair signalled by a ternary DRL index as 

an MV predictor. An MVD is signalled for the second MV. 

• NEW_NEARMV: Use the 1-, 2-, or 3-indexed MV pair signalled by a ternary DRL index as 

an MV predictor. An MVD is signalled for the first MV. 

• NEW_NEWMV: Use the 0-, 1-, or 2-indexed MV pair signalled by a ternary DRL index as 

an MV predictor. MVDs are signalled for both the first and second MVs. 

• GLOBAL_GLOBALMV: Use MVs from each reference based on their frame-level global 

motion parameters. 

MV1, MV2

MV1, MV2

MV1, MV2

MV1, MV2

MV1, MV3

MV1, MV3

MV1, MV2

MV1, MV2

MV2, MV3

MV2, MV3

MV2, MV3

MV2, MV3

NEAREST_NEARESTMV

NEAR_NEARMV

NEAR_NEWMV

NEW_NEARMV

NEW_NEWMV

MVglobalGLOBALMV

Dynamic reference list using 

compound reference frame

...

...

...

...

(ref1,ref2) (ref1, ref3) (ref2, ref3) ...
NEW_NEARESTMV

NEAREST_NEWMV

 

Figure 14: Motion vector prediction modes for compound prediction mode case 

In all cases except the NEARESTMV and NEAREST_NEARESTMV modes, the DRL index is 
signalled to specify the exact MV or MV-pair to use as the MV predictor. However, the DRL index 
range can be either [0, 1, 2] or [1, 2, 3] in the reference lists depending on the MV prediction mode. 

3.3.5 Inter prediction mode signalling 

For signalling an inter prediction mode, the flag skip_mode is first signalled to determine whether 

SKIP mode applies to the current coding block. When SKIP mode is enabled, compound inter 
prediction is conducted using two reference frames and translational motion. The MVs and 
reference frames are all implicitly derived (taken as the first entry in the DRL) instead of being 
signalled. When SKIP mode is not enabled, the reference frame information is signalled. 

When signalling the reference frame, the flag comp_mode is first signalled to indicate whether 

one or two reference frames is to be used for inter prediction. This flag is signalled only when the 
coding block width and height are both greater than or equal to eight. For coding blocks with a 
width or height of less than eight, only a single reference frame is used for inter prediction. When 
compound prediction is applied, comp_ref_type syntax is further signalled to indicate whether 

the compound prediction is uni-directional or bi-directional. Furthermore, when the uni-directional 
compound prediction mode is applied, one of the four predefined reference frame combinations 
is signalled. When the bi-directional compound prediction mode is applied, the reference frame 
indices for the forward and backward reference frames are signalled separately. For single 
reference predictions, just one of the seven possible reference frames is signalled. 



 

 

After reference frame signalling, a YMode value is derived by multiple syntaxes to indicate which 

mode is to be applied for MV prediction and signalling. The mapping between YMode and the MV 

prediction is listed in Table 3. After the derivation of YMode, drl_mode syntax is further signalled 

to indicate which candidate in the DRL is to be used for MV prediction. After that, the MVD is 
further signalled when one of NEWMV, NEAREST_NEWMV, NEW_NEARESTMV, 
NEAR_NEWMV, NEW_NEARMV, or NEW_NEWMV is applied. When YMode is equal to 

NEW_NEARESTMV, NEW_NEARMV, or NEW_NEWMV, the MVD is signalled for the MV that is 
associated with the first reference frame. When YMode is equal to NEAREST_NEWMV, 

NEAR_NEWMV, or NEW_NEWMV, the MVD is signalled for the MV that is associated with the 
second reference frame. 

Table 3: Mapping between YMode and MV prediction mode 

YMode MV prediction mode 

0 NEARESTMV 

1 NEARMV 

2 GLOBALMV 

3 NEWMV 

4 NEAREST_NEARESTMV 

5 NEAR_NEARMV 

6 NEAREST_NEWMV 

7 NEW_NEARESTMV 

8 NEAR_NEWMV 

9 NEW_NEARMV 

10 GLOBAL_GLOBALMV 

11 NEW_NEWMV 

 

After signalling the MV prediction mode, the compound inter–intra mode (see Section 3.3.10) is 
further signalled. The compound inter–intra mode is signalled only when single reference frame 
inter prediction is applied, and when the block size is greater than or equal to 8×8 but smaller 
than or equal to 32×32. Signalling of the compound inter–intra mode includes a flag interintra 

that indicates whether the compound inter–intra mode is to be applied. 

When the compound inter–intra mode is applied, an intra mode index interintra_mode is 

further signalled to indicate which of the DC_PRED, V_PRED, H_PRED, and SMOOTH modes 
is to be used to perform the intra prediction. 

Thereafter, a flag wedge_interintra is further signalled to indicate whether the Wedge-based 

inter–intra prediction mode (see Section 3.3.10.2) is to be applied. When the Wedge-based inter–
intra prediction mode is applied, wedge_index syntax is further signalled, which indicates the 

Wedge partition pattern that is to be applied in the Wedge-based inter–intra prediction. 

After signalling the compound inter–intra mode, motion_mode is further signalled or implicitly 

derived to indicate which of the translational, overlapped block motion compensation (OBMC), 
and warped motion compensation modes is to be applied. 

After signalling motion_mode, the compound prediction type is further signalled to indicate which 

compound prediction mode is to be applied. The compound prediction modes include compound 



 

 

Wedge-based prediction, difference-modulated compound prediction, and distance-based 
compound prediction. 

Finally, the interpolation filter index is signalled if applicable to indicate the selection of 
interpolation filter when translational motion compensation is applied. 

3.3.6 Translational motion compensation 
Translational motion models assume that all pixels within a coding block share the same single 
MV, as shown in Figure 15. The MV can be represented in 1/16-pixel accuracy; that is, the 
minimum granularity of the MV is 1/16 of a pixel. When deriving the prediction block using an MV 
pointing to a fractional sample location, interpolation is applied to generate the prediction block. 
If the MV is pointing to a fractional horizontal position, a row-wise horizontal interpolation filter is 
first applied to generate an intermediate block. Thereafter, if the MV is pointing to a fractional 
vertical position, a second column-wise vertical interpolation filter is applied using the intermediate 
block to generate the final prediction block. 

Reference block

Current block Current block  

Figure 15: Examples of translational motion (left) and affine motion (right) 

In the frame header, a flag is first signalled to indicate whether the interpolation filter can be 
switchable for the current frame. If the flag is signalled with a value indicating that the interpolation 
filter is not switchable, two bits are further signalled to indicate which of the four predefined finite 
impulse response (FIR) filters is to be applied. The four FIR filters include a 6-tap regular FIR filter 
(REGULAR; Table 4), a 6-tap FIR filter (SMOOTH; Table 5), an 8-tap FIR filter (SHARP; Table 
6), and a 2-tap BILINEAR filter (Table 7). 

Table 4: Filter coefficients of the REGULAR filter 

Sample position Tap 0 Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6 Tap 7 

0 0 0 0 128 0 0 0 0 

1/16 0 2 −6 126 8 −2 0 0 

2/16 0 2 −10 122 18 −4 0 0 

3/16 0 2 −12 116 28 −8 2 0 

4/16 0 2 −14 110 38 −10 2 0 



 

 

5/16 0 2 −14 102 48 −12 2 0 

6/16 0 2 −16 94 58 −12 2 0 

7/16 0 2 −14 84 66 −12 2 0 

8/16 0 2 −14 76 76 −14 2 0 

9/16 0 2 −12 66 84 −14 2 0 

10/16 0 2 −12 58 94 −16 2 0 

11/16 0 2 −12 48 102 −14 2 0 

12/16 0 2 −10 38 110 −14 2 0 

13/16 0 2 −8 28 116 −12 2 0 

14/16 0 0 −4 18 122 −10 2 0 

15/16 0 0 −2 8 126 −6 2 0 

 

Table 5: Filter coefficients of the SMOOTH filter 

Sample position Tap 0 Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6 Tap 7 

0 0 0 0 128 0 0 0 0 

1/16 0 2 28 62 34 2 0 0 

2/16 0 0 26 62 36 4 0 0 

3/16 0 0 22 62 40 4 0 0 

4/16 0 0 20 60 42 6 0 0 

5/16 0 0 18 58 44 8 0 0 

6/16 0 0 16 56 46 10 0 0 

7/16 0 -2 16 54 48 12 0 0 

8/16 0 −2 14 52 52 14 −2 0 

9/16 0 0 12 48 54 16 −2 0 

10/16 0 0 10 46 56 16 0 0 

11/16 0 0 8 44 58 18 0 0 

12/16 0 0 6 42 60 20 0 0 

13/16 0 0 4 40 62 22 0 0 

14/16 0 0 4 36 62 26 0 0 

15/16 0 0 2 34 62 28 2 0 

 

Table 6: Filter coefficients of the SHARP filter 

Sample position Tap 0 Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6 Tap 7 

0 0 0 0 128 0 0 0 0 

1/16 −2 2 −6 126 8 −2 2 0 

2/16 −2 6 −12 124 16 −6 4 −2 

3/16 −2 8 −18 120 26 −10 6 −2 



 

 

4/16 −4 10 −22 116 38 −14 6 −2 

5/16 −4 10 −22 108 48 −18 8 −2 

6/16 −4 10 −24 100 60 −20 8 −2 

7/16 −4 10 −24 90 70 −22 10 −2 

8/16 −4 12 −24 80 80 −24 12 −4 

9/16 −2 10 −22 70 90 −24 10 −4 

10/16 −2 8 −20 60 100 −24 10 −4 

11/16 −2 8 −18 48 108 −22 10 −4 

12/16 −2 6 −14 38 116 −22 10 −4 

13/16 −2 6 −10 26 120 −18 8 −2 

14/16 −2 4 −6 16 124 −12 6 −2 

15/16 0 2 −2 8 126 −6 2 −2 

 

Table 7: Filter coefficients of the BILINEAR filter 

Sample position Tap 0 Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6 Tap 7 

0 0 0 0 128 0 0 0 0 

1/16 0 0 0 120 8 0 0 0 

2/16 0 0 0 112 16 0 0 0 

3/16 0 0 0 104 24 0 0 0 

4/16 0 0 0 96 32 0 0 0 

5/16 0 0 0 88 40 0 0 0 

6/16 0 0 0 80 48 0 0 0 

7/16 0 0 0 72 56 0 0 0 

8/16 0 0 0 64 64 0 0 0 

9/16 0 0 0 56 72 0 0 0 

10/16 0 0 0 48 80 0 0 0 

11/16 0 0 0 40 88 0 0 0 

12/16 0 0 0 32 96 0 0 0 

13/16 0 0 0 24 104 0 0 0 

14/16 0 0 0 16 112 0 0 0 

15/16 0 0 0 8 120 0 0 0 

 

The interpolation filter can be switchable in both the horizontal and vertical directions of a coding 
block. If a dual filter is enabled in the sequence header, the interpolation filter selection can be 
signalled separately for the horizontal and vertical directions. Otherwise, only one interpolation 
filter selection can be signalled per coding block, which is shared for the horizontal and vertical 
directions. When the interpolation filter can be switchable, the candidate interpolation filters 
include three predefined FIR filters, i.e., REGULAR, SMOOTH, and SHARP. For smaller coding 
block sizes with dimensions of less than or equal to four along either the horizontal or vertical 



 

 

direction, the REGULAR and SMOOTH filters are replaced by another two 4-tap filters, as shown 
in Table 8, and the SHARP filter is no longer useable. 

Table 8: Filter coefficients of the REGULAR and SMOOTH filters for dimensions of less than or 
equal to 4 

Sample 
position 

REGULAR SMOOTH 

Tap 0 Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6 Tap 7 

0 0 128 0 0 0 128 0 0 

1/16 −4 126 8 −2 30 62 34 2 

2/16 −8 122 18 −4 26 62 36 4 

3/16 −10 116 28 −6 22 62 40 4 

4/16 −12 110 38 −8 20 60 42 6 

5/16 −12 102 48 −10 18 58 44 8 

6/16 −14 94 58 −10 16 56 46 10 

7/16 −12 84 66 −10 14 54 48 12 

8/16 −12 76 76 −12 12 52 52 12 

9/16 −10 66 84 −12 12 48 54 14 

10/16 −10 58 94 −14 10 46 56 16 

11/16 −10 48 102 −12 8 44 58 18 

12/16 −8 38 110 −12 6 42 60 20 

13/16 −6 28 116 −10 4 40 62 22 

14/16 −4 18 122 −8 4 36 62 26 

15/16 −2 8 126 −4 2 34 62 30 

 

3.3.7 Warped motion compensation 
Unlike conventional motion compensation, which assumes a translational motion model between 
the reference and target block, warped motion utilizes an affine model, as shown in Figure 15. 

The affine motion model can be represented by Equation (1): 

 [
𝑥′
𝑦′
] = [

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3

] ∙ [
𝑥
𝑦
1
] (1) 

where [x, y] are the coordinates of the original pixel and [x′, y′] are the warped coordinates of the 
reference block. It can be seen from Equation (1) that up to six parameters are needed to specify 
the warped motion: a3 and b3 specify a conventional translational MV; a1 and b2 specify the scaling 
along the MV; and a2 and b1 specify the rotation. 

3.3.7.1 Global warped motion compensation 

Global motion information is signalled for each inter reference frame, which includes the global 
motion type and a number of motion parameters. The global motion types and numbers of 
associated parameters are listed in Table 9. 



 

 

Table 9: Global motion types with associated number of parameters 

Global motion type Number of parameters 

Identity (zero motion) 0 

Translational 2 

Rotational 4 

Zoom 4 

General affine 6 

 

After signalling the reference frame index, if global motion is selected, the global motion type and 
the parameters associated with the given reference frame are used for the current coding block. 

3.3.7.2 Local warped motion compensation 

For an inter coding block, local warped motion is allowed when the following conditions are met: 

• The current block uses single reference prediction 

• The width or height of the coding block is greater than or equal to eight samples 

• At least one of the adjacent neighbouring blocks uses the same reference frame as the 

current block 

If local warped motion is used for the current block, the affine model parameters are estimated by 
mean-squared minimization of the difference between the reference and modelled projections 
based on the MVs of the current block and its adjacent neighbouring blocks. To estimate the 
parameters of local warped motion, a projection sample pair of the center pixel in the neighbouring 
block and its corresponding pixel in the reference frame are collected if the neighbouring block 
uses the same reference frame as the current block. After that, three extra samples are created 
by shifting the center position by a quarter sample in one or two dimensions. These extra samples 
are also considered as projection sample pairs to ensure the stability of the model parameter 
estimation process. 

The MVs of neighbouring blocks, which are used to derive the motion parameters, are referred to 
as motion samples. The motion samples are selected from neighbouring blocks that use the same 
reference frame as the current block. Note that the warped motion prediction mode is only enabled 
for blocks that use a single reference frame. This means that the motion samples can only be 
selected from blocks that are coded by uni-prediction (single reference frame). For example, in 
Figure 16, the MVs of neighbouring blocks B0, B1, and B2 are referred as MV0, MV1, and MV2, 
respectively. The current block is predicted using uni-prediction with reference frame Ref0. 
Neighbouring block B0 is predicted using compound prediction with reference frames Ref0 and 
Ref1; B1 is predicted using uni-prediction with reference frame Ref0; and B2 is predicted using 
compound prediction with reference frames Ref0 and Ref2. Since only B1 has the same reference 
frame as the current block, MV1 becomes a motion sample that can be used to derive the affine 
motion parameters of the current block, whereas MV0 and MV2 cannot be used. 



 

 

Current
Block

B2

B1 B0

Ref0
Ref2

Ref0
Ref1Ref0

Ref0
 

Figure 16: Example of motions samples used for deriving the model parameters of local warped 
motion prediction 

3.3.8 Overlapped block motion compensation 

For an inter coding block, overlapped block motion compensation (OBMC) is allowed when the 
following conditions are met: 

• The current block uses single reference prediction 

• The width or height of the coding block is greater than or equal to eight samples 

• At least one of the neighbouring blocks is inter coded 

When OBMC is applied to the current block, the initial inter prediction samples are first generated 
by using the MV associated with the current block. Then, the inter prediction samples for the 
current block and the inter prediction samples derived using MVs from the upper and left 
neighbouring blocks are blended to generate the final prediction samples. The maximum number 
of neighbouring MVs is limited by the size of the current block; up to four MVs from each of the 
upper and left blocks can be used in the OBMC process for the current block. 

An example of the processing order of neighbouring blocks is shown in Figure 17, wherein the 
values marked in each block indicate the processing order of the MVs of the current and 
neighbouring blocks. Specifically, the MV of the current block is first applied to generate inter 
prediction samples p0(x, y). Then, the MV of block 1 is applied to generate prediction samples 
p1(x, y). After that, the prediction samples in the overlapping area between block 0 and block 1 
(marked in grey in Figure 17) are given as a weighted average of p0(x, y) and p1(x, y). The MVs 
of blocks 2, 3, and 4 are further applied and blended in the same way. 



 

 

 

Figure 17: Example of neighbouring blocks used in OBMC process 

3.3.9 Compound inter prediction 

Inter prediction using two reference frames is called compound prediction, as formulated below. 

 𝑃(𝑥, 𝑦) = (𝑤(𝑥, 𝑦) ∙ 𝑃0(𝑥, 𝑦) + (64 − 𝑤(𝑥, 𝑦)) ∙ 𝑃1(𝑥, 𝑦) + 32) ≫ 6, (2) 

where P0(x, y) and P1(x, y) refer to the prediction samples from two reference frames for the 
current sample located at (x, y), w(x, y) is the weighting factor applied to the prediction sample 
from the first reference frame, and P(x, y) is the final compound prediction. Depending on the 
derivations of the weighting factor and prediction block, different compound motion prediction 
modes are defined, as described in the following subsections. For SKIP mode using two reference 
frames, w(x, y) is always set to 32. 

3.3.9.1 Compound Wedge-based prediction 

In compound Wedge-based prediction mode, for each block size, a set of 16 predefined two-
dimensional weighting arrays are hard coded. In each array, the weightings are arranged in such 
a way as to project to a predefined Wedge partitioning pattern. In each Wedge partitioning pattern, 
two Wedge partitions are specified along a certain edge direction and position. For samples 
located in one of the two Wedge partitions, the weightings are mostly set as 64. For samples 
located in the other Wedge partition, the weightings are mostly set as 0. Moreover, along the 
Wedge partitioning boundaries, the weightings are valued as 32. 

In Wedge-based prediction mode, two syntaxes are predefined: wedge_index, which specifies 

the Wedge partitioning pattern index (ranging from 0 to 15); and wedge_sign, which specifies 

which of the two partitions is to be assigned the dominant weighting. 

3.3.9.2 Difference-modulated compound prediction 

In difference-modulated compound prediction mode, the weighting w(x, y) is derived as follows: 

  

 

  



 

 

 𝑤(𝑥, 𝑦) = {
38 +

|𝑃1(𝑥,𝑦)−𝑃2(𝑥,𝑦)|

16
, 𝑚𝑎𝑠𝑘_𝑡𝑦𝑝𝑒 = 0

64 − (38 +
|𝑃1(𝑥,𝑦)−𝑃2(𝑥,𝑦)|

16
) , 𝑚𝑎𝑠𝑘_𝑡𝑦𝑝𝑒 = 1

, (3) 

where mask_type is a signalled flag that indicates the assignment of weighting, and w(x, y) is 

further clipped in the range of [0, 64] before being applied in Equation (2) for deriving the final 
prediction block. 

3.3.9.3 Distance-based compound prediction 

In distance-based compound prediction mode, the weighting w(x, y) is dependent on the temporal 
distance between the current frame and the reference frame. Let d0 and d1 represent the distance 
from the current frame to two reference frames. If d0 is less than d1, the derivation of w(x, y) that 
is applied to P0(x, y) is described as follows: 

 𝑤(𝑥, 𝑦) = {

36, 2𝑑0 < 3𝑑1
44, 2𝑑0 < 5𝑑1
48, 2𝑑0 < 7𝑑1
52, 2𝑑0 ≥ 7𝑑1

. (4) 

Otherwise, if d0 is greater than d1, the derivation is symmetric: 

 𝑤(𝑥, 𝑦) = {

64 − 36, 2𝑑1 < 3𝑑0
64 − 44, 2𝑑1 < 5𝑑0
64 − 48, 2𝑑1 < 7𝑑0
64 − 52, 2𝑑1 ≥ 7𝑑0

. (5) 

A special case of the weighting assignment is used when w(x, y) is equal to 32, whereby equal 
weightings are given to P0(x, y) and P1(x, y). 

3.3.10 Compound inter–intra prediction 

In compound inter–intra prediction mode, the prediction block is derived as a combination of intra 
prediction and inter prediction. That is, P0(x, y) is an intra prediction sample and P1(x, y) is an inter 
prediction sample. The intra prediction block is derived using the DC_PRED, V_PRED, H_PRED, 
or SMOOTH prediction mode, and the inter prediction block is derived using single reference inter 
prediction with translational motion. Depending on how the weightings are derived for the intra 
and inter prediction samples, two compound inter–intra prediction modes can be applied, 
including regular inter–intra prediction and Wedge-based inter–intra prediction. 

3.3.10.1 Regular inter–intra prediction 

The different intra prediction modes use weightings that are derived differently. In regular inter–
intra prediction, the weighting value decreases along the prediction direction. More specifically, 
the weighting applied to the intra prediction sample P0(x, y) is described as follows: 

 𝑤(𝑥, 𝑦) = {

32, DC_PRED
𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑈𝑇[𝑥 ∙ 𝑠𝑖𝑧𝑒𝑆𝑐𝑎𝑙𝑒], V_PRED
𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑈𝑇[𝑦 ∙ 𝑠𝑖𝑧𝑒𝑆𝑐𝑎𝑙𝑒], H_PRED

𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑈𝑇[min(𝑥, 𝑦) ∙ 𝑠𝑖𝑧𝑒𝑆𝑐𝑎𝑙𝑒], SMOOTH

, (6) 

where sizeScale is derived using the block width W and block height H: 



 

 

 𝑠𝑖𝑧𝑒𝑆𝑐𝑎𝑙𝑒 = 128/max(𝑊, 𝐻), (7) 

and WeightLUT is a hard-coded lookup table (Table 10). 

Table 10: Lookup table used in compound inter–intra motion prediction 

60 58 56 54 52 50 48 47 45 44 42 41 39 38 37 35 34 33 32 

31 30 29 28 27 26 25 24 23 22 22 21 20 19 19 18 18 17 16 

16 15 15 14 14 13 13 12 12 12 11 11 10 10 10 9 9 9 8 

8 8 8 7 7 7 7 6 6 6 6 6 5 5 5 5 5 4 4 

4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1      

 

3.3.10.2 Wedge-based inter–intra prediction 

Compound inter–intra prediction can be also applied using a Wedge-based weighting scheme. 
More specifically, the prediction block is a combination of intra and inter prediction blocks, and 
the weightings are specified using the Wedge partitioning pattern specified by wedge_index 

(ranging from 0 to 15). The Wedge-based inter–intra motion prediction mode differs from the 
regular Wedge-based motion prediction mode described in 3.3.9.1, because the value of 
wedge_sign, which specifies the partition with the dominant weighting, is derived rather than 

signalled. 

3.4 Transform coding 

3.4.1 Core transforms 

A separable two-dimensional (2D) transform process is applied to prediction residuals. For the 
forward transform, a one-directional (1D) vertical transform is first performed on each column of 
the input residual block, then a horizontal transform is performed on each row of the vertical 
transform output. For the backward transform, a 1D horizontal transform is first performed on 
each row of the input dequantized coefficient block, then a vertical transform is performed on each 
column of the horizontal transform output. The primary transforms include four different types of 
transforms: a) 4-, 8-, 16-, 32-, and 64-point discrete cosine transforms (DCT-2); b) 4-, 8-, and 16-
point asymmetric discrete sine transforms (DST-4 and DST-7) and c) their flipped versions; and 
d) 4-, 8-, 16-, and 32-point identity transforms (IDTs). For the asymmetric DSTs (ADSTs), a 
transform size of 4-point refers to DST-7, otherwise, when the transform size is greater than 4-
point, it refers to DST-4. The transform bases of the supported transform types are listed in Table 
11. 

Table 11: Transform basis functions for DCT-2, DST-4, DST-7, and IDT for N-point input 

Transform Type Basis function Ti(j), with i, j = 0,…,(N – 1) 

DCT-2 𝑇𝑖(𝑗) = 𝜔0 ∙ √
2

𝑁
∙ cos⁡ (

𝜋 ∙ 𝑖 ∙ (2𝑗 + 1)

2𝑁
) 



 

 

where 𝜔0 = (𝑖 == 0)⁡?⁡√
2

𝑁
∶ 1 

DST-4 𝑇𝑖(𝑗) = √
2

𝑁
∙ sin (

𝜋 ∙ (2𝑖 + 1) ∙ (2𝑗 + 1)

4𝑁
) ⁡ 

DST-7 𝑇𝑖(𝑗) = √
4

2𝑁 + 1
∙ sin (

𝜋 ∙ (2𝑖 + 1) ∙ (𝑗 + 1)

2𝑁 + 1
) ⁡ 

IDT 𝑇𝑖(𝑗) = (𝑖 == 𝑗)? 1 ∶ 0⁡ 

3.4.2 Transform selection and signalling 

For the luma colour component, each transform block can select one pair of horizontal and vertical 
transforms given a predefined set of transform type candidates. This selection is explicitly 
signalled in the bitstream, unless max(W, H) is equal to 64, when the selection is not signalled. 
When the transform block has a width or height greater than or equal to 32 (max(W, H) is greater 
than or equal to 32), the set of transform type candidates is dependent on the prediction mode as 
per Table 12. Otherwise, when the transform block width and height are both smaller than 32 
(max(W, H) is less than 32), the set of transform type candidates is dependent on the prediction 
mode as per Table 13. 

Table 12: Transform type candidates for luma when max(W, H) is greater than or equal to 32 

max(W, H) Intra Inter 

32 DCT only DCT only, IDTX 

64 DCT only DCT only 

Table 13: Transform type candidates for luma when max(W, H) is less than 32 

min(W, H) Intra Inter 

4 DTT4, IDTX, 1DDCT ALL16 

8 DTT4, IDTX, 1DDCT ALL16 

16 DTT4, IDTX DTT9, IDTX, 1DDCT 

The sets of transform type candidates are defined in Table 14. 

Table 14: Specification of transform set 

Transform set Vertical transform Horizontal transform 

DCT only DCT DCT 

IDTX IDT IDT 

1DDCT 
DCT IDT 

IDT DCT 

DTT4 

ADST ADST 

ADST DCT 

DCT ADST 



 

 

DCT DCT 

DTT9 

DCT DCT 

DCT ADST 

DCT Flipped ADST 

ADST DCT 

ADST ADST 

ADST Flipped ADST 

Flipped ADST DCT 

Flipped ADST ADST 

Flipped ADST Flipped ADST 

ALL16 

DCT DCT 

DCT ADST 

DCT Flipped ADST 

DCT IDT 

ADST DCT 

ADST ADST 

ADST Flipped ADST 

ADST IDT 

Flipped ADST DCT 

Flipped ADST ADST 

Flipped ADST Flipped ADST 

Flipped ADST IDT 

IDT DCT 

IDT ADST 

IDT Flipped ADST 

IDT IDT 

For chroma colour components, the transform type selection process is performed implicitly. For 
intra prediction residuals, the transform type is selected according to the intra prediction mode as 
specified in Table 15. For inter prediction residuals, the transform type is selected according to 
the transform type selection of the collocated luma block. Therefore, for chroma colour 
components, there is no transform type signalling in the bitstream. 

Table 15: Transform type selection for chroma colour component intra prediction residuals 

Intra prediction mode Vertical transform Horizontal transform 

DC_PRED DCT DCT 

V_PRED ADST DCT 

H_PRED DCT ADST 

D45_PRED DCT DCT 

D135_PRED ADST ADST 

D113_PRED ADST DCT 

D157_PRED DCT ADST 

D203_PRED DCT ADST 

D67_PRED ADST DCT 



 

 

SMOOTH ADST ADST 

SMOOTH_V ADST DCT 

SMOOTH_H DCT ADST 

Paeth ADST ADST 

The computational cost of large size (e.g., 64-point) transforms is further reduced by zeroing out 
all the coefficients, except in the following two cases: 

• The top-left 32×32 quadrant for 64×64/64×32/32×64 (DCT, DCT) transform combinations. 

• The left 32×16 area and top 16×32 area for 64×16 and 16×64 (DCT, DCT) transform 

combinations, respectively. 

Both DCT-2 and ADST (DST-4 or DST-7) are implemented using a butterfly structure [7], which 
includes multiple stages of butterfly operations. Each butterfly operation is calculated in parallel, 
and the different stages are cascaded in sequential order. 

3.5 Quantization 
Quantization is applied to the transform coefficients at the encoder. The quantized transform 
coefficients are then further entropy coded and signalled into the bitstream. At the decoder, 
dequantization is applied to the coefficients parsed from the bitstream, and the dequantized 
coefficients are fed into the inverse transform process to derive residual samples. Different 
quantization step sizes may be applied for DC and AC transform coefficients, as well as for luma 
and chroma transform coefficients. The process is as follows: 

• To specify the quantization step size, a base_q_idx syntax element is first signalled in 

the frame header. base_q_idx is an 8-bit fixed length code specifying the quantization 

step size for luma AC coefficients, and has a valid value range of [0, 255]. 

• After that, the delta value relative to base_q_idx for luma DC coefficients (indicated as 

DeltaQYDc) is further signalled. 

• If there are multiple colour planes, then a flag diff_uv_delta is signalled to indicate 

whether different quantization index values should be applied to the Cb and Cr colour 
components. 

• If diff_uv_delta is signalled as 0, then only the delta values relative to base_q_idx 

for chroma DC coefficients (indicated as DeltaQUDc) and AC coefficients (indicated as 
DeltaQUAc) are signalled. 

• Otherwise, the delta values relative to base_q_idx for the Cb and Cr DC coefficients 

(indicated as DeltaQUDc and DeltaQVDc) and Cb and Cr AC coefficients (indicated as 
DeltaQUAc and DeltaQVAc) are signalled. 

The above decoded DeltaQYDc, DeltaQUAc, DeltaQUDc, DeltaQVAc, and DeltaQVDc values 
are added to base_q_idx to derive the quantization indices. These quantization indices are 

further mapped to quantization step size according to the appropriate lookup table. The mapping 
from quantization index to quantization step size for 8-, 10-, and 12-bit internal bit depths is 
specified by a 3×256 lookup table Dc_Qlookup for DC coefficients and by a 3×256 lookup table 
Ac_Qlookup for AC coefficients. The mappings between quantization index, e.g., base_q_idx, 

to quantization step size are shown in Figure 18 and Figure 19 for DC and AC transform 
coefficients, respectively. 

 



 

 

 

Figure 18: Quantization step size of DC coefficients for different internal bit depths 

 

Figure 19: Quantization step size of AC coefficients for different internal bit depths 

Given a quantization step size Qstep, the input quantized coefficients are further dequantized using 
the following formula: 

 𝐹⁡ = ⁡𝑠𝑖𝑔𝑛 × ((𝑓 × 𝑄step)⁡%⁡0𝑥𝐹𝐹𝐹𝐹𝐹𝐹)/𝑑𝑒𝑁𝑜𝑟𝑚, (8) 

where f is the input quantized coefficient, F is the output dequantized coefficient, and deNorm is 
a constant derived from the transform block area size, as indicated by Table 16. 

Table 16: Selection of deNorm for different transform block area sizes 

deNorm Transform block area size 

 

    

     

     

     

     

               

 
  
  

       

        

         

         

 

    

     

     

     

     

     

     

               

 
  
  

       

        

         

         



 

 

1 < 512 samples 

2 512 or 1024 samples 

4 > 1024 samples 

When the quantization index is 0, quantization is performed using a quantization step size of 1, 
which is a lossless coding mode. 

3.6 Entropy coding 

3.6.1 Multisymbol arithmetic coding engine 

An M-ary arithmetic coding engine is applied for entropy coding of syntax elements. Each syntax 

element is associated with an alphabet of M elements, where M can be any integer value between 

2 and 16. The input to the encoding is an M-ary symbol, and a context consists of a set of M 

probabilities. The probability is updated after coding/parsing each syntax, and the probabilities 

are represented as 15-bit cumulative distribution functions (CDFs). The cumulative distribution 

functions are arrays of M 15-bit integers as follows: 

 𝐶 = [𝑐0, 𝑐1, … , 𝑐(𝑀−2), 2
15⁡], (9) 

where cn/32768 is the probability of the symbol being less than or equal to n. The probability 

update is performed using the following equations: 

 {
𝑐𝑚 = 𝑐𝑚 ∙ (1 − 𝛼) 𝑚 ∈ [0, 𝑠𝑦𝑚𝑏𝑜𝑙)

𝑐𝑚 = 𝑐𝑚 + 𝛼 ∙ (1 − 𝑐𝑚) 𝑚 ∈ [𝑠𝑦𝑚𝑏𝑜𝑙,𝑀 − 1)
, (10) 

where α is the probability update rate that adapts based on the number of times the symbol has 

been decoded (up to a maximum of 32) and m is the element index in the CDF. This adaptation 

of α allows faster probability updates at the beginning of coding/parsing the syntax elements. The 

M-ary arithmetic coding process follows the conventional arithmetic coding engine design; 

however, only the upper 9 bits are input to the arithmetic encoder/decoder. 

3.6.2 Coefficient coding 

For each transform block, the coefficient coding starts with coding an all_zero flag, which 

indicates whether the transform block has only zero residuals. This flag is followed by signalling 
the primary transform kernel type and the end-of-block (EOB) position, in cases where the 
all_zero flag is signalled as 0. Thereafter, the coefficient values are coded with multiple level 

maps together with sign values. The level maps are coded as three level planes, namely, lower-
level, middle-level, and higher-level planes, and the sign is coded as a separate plane. The lower-, 
middle-, and higher-level planes correspond to different ranges of coefficient magnitudes (0–2, 
3–14, 15 and above, respectively). 

The three level planes are coded as follows. After the EOB value is coded, the lower- and middle-
level planes are coded together in backward scanning order (where the scanning order refers to 
a zig-zag scan applied on the transform coefficients of the current transform block). Then, the 
sign plane and higher-level plane are coded together in forward scan order. Thereafter, the 
remainder (coefficient magnitude minus 14) is entropy coded using Exp-Golomb code. 



 

 

The context model applied to the lower-level plane depends on 1) the primary transform directions, 
namely: bi-directional, horizontal, and vertical; 2) the transform block size; and 3) up to five 
neighbouring transform coefficients in the transform domain. The middle-level plane uses a similar 
context model, but the number of context neighbour coefficients is reduced from 5 to 2. The 
higher-level plane is coded by Exp-Golomb code without using context modelling. For the sign 
plane, with the exception of the DC sign, which is coded using the DC signs from neighbouring 
transform units, sign values of all other coefficients are coded directly without context modelling. 

3.7 Loop filtering and post-processing 

3.7.1 Deblocking filter 

In the loop filtering pipeline, a deblocking filter is first utilized to reduce blocking artifacts at the 
transform block boundaries caused by quantization. For luma colour component, 4-, 8-, and 14-
tap predefined filters can be applied as the deblocking filter. For chroma colour components, 4- 
and 6-tap predefined filters can be applied as the deblocking filter. The selection of filter length is 
determined by the minimum transform block sizes that are applied on both sides of the transform 
block boundary. Specifically, if a transform block has a width and height of greater than 16 on 
both sides, the 14-tap filter is applied on the luma colour component. An illustration of a deblocking 
filter using a 14-tap filter is shown in Figure 20. 

Tran
sfo

rm
 b

lo
ck b

o
u

n
d

ary

p6 p5 p4 p3 p2 p1 p0 q0 q1 q2 q3 q4 q5 q6

 

Figure 20: Illustration of a deblocking filter applied on a vertical transform block boundary using 
a 14-tap filter 

The filters applied in the deblocking process are low-pass filters. To avoid over-smoothing of an 
actual edge in the texture, a boundary condition is checked when deblocking. That is, for a 
boundary sample that shows high local variance, the presence of an actual edge is recognized 
and no deblocking filter is applied. The boundary sample is identified as high variance when the 
following conditions are met: 

• |𝑝1 − 𝑝0| > 𝑇0 

• |𝑞1 − 𝑞0| > 𝑇0 

• 2|𝑝0 − 𝑞0| + |𝑝1 − 𝑞1|/2 > 𝑇1 

where p0, p1, q0, and q1 indicate the reconstruction samples located on the left (or top) and right 
(or bottom) sides of the transform block boundary. If the filter length is 8 or 14, two additional 
samples are checked to determine if high variance is present, indicated by the following conditions: 

• |𝑝3 − 𝑝2| > 𝑇0 

• |𝑞3 − 𝑞2| > 𝑇0 



 

 

In the above conditions, T0 and T1 are threshold values that can be decided on a superblock basis. 
Greater threshold values indicate a higher chance of applying the deblocking filter. 

3.7.2 Constrained directional enhancement filter 

3.7.2.1 Edge direction estimation 

Constrained directional enhancement filters (CDEFs) perform edge direction searching at the 

8×8 block-level. In CDEFs, there are eight edge directions in total, as illustrated in Figure 21. 

 

Figure 21: Line number k for pixels following direction d = 0,…,7 in an 8×8 block 

The optimal edge direction dopt is found by maximizing the following term: 

 𝑑opt = max
𝑑

𝑆𝑑, (11) 

where 

 𝑠𝑑 = ∑
1

𝑁𝑑,𝑘
(∑ 𝑥𝑝𝑝∈𝑃𝑑,𝑘 )2𝑘 ; (12) 

xp is the value of pixel p; Pd,k is the set of pixels in line k following direction d; and Nd,k is the 

cardinality of Pd,k. 

3.7.2.2 Directional filter 

The CDEF filtering process consists of a primary and secondary filter. The primary filter processes 

reconstruction samples along the edge direction (as shown in Figure 22), while the secondary 



 

 

filter processes reconstruction samples along a direction 45-degrees from the edge direction (as 

shown in Figure 23). In the primary filter, for even strengths, a is set equal to 2 and b is set equal 

to 4, for odd strengths, a is set equal to 3 and b is set equal to 3.  

 
Figure 22: Primary filter taps following edge direction. The pixel to be filtered is coloured  

 
Figure 23: Secondary filter taps. The pixel to be filtered is coloured 

CDEFs can be described by the following equation: 

𝑦𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝑟𝑜𝑢𝑛𝑑(∑ 𝑤𝑝𝑓(𝑥𝑚,𝑥 − 𝑥𝑖,𝑗, 𝑆
𝑝, 𝐷𝑚,𝑛 ) + ∑ 𝑤𝑠𝑓(𝑥𝑚,𝑥 − 𝑥𝑖,𝑗, 𝑆

𝑠, 𝐷𝑚,𝑛 ) (13) 

where xi,j and yi,j are the input and output reconstructed sample values of the CDEF filter, 
respectively; superscripts p and s denote the primary and secondary filters, respectively; w is a 
weighting factor applied between the primary and secondary filter taps; f(d,S,D) is a nonlinear 
filtering function; S is filter strength; and D is a damping parameter. For 8-bit content, Sp ranges 
from 0 to 15, and Ss can be 0, 1, 2, or 4. D ranges from 3 to 6 for luma colour component and 
from 2 to 4 for chroma colour components. 

    

    

    

    

    

        

    

                

    

        

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

                    

                    

    

    

                

    

    

    

        

        

        

    

        

        

        

        

    

        

        

        

    

                                



 

 

CDEF is a nonlinear filtering process that prevents excessive blurring when a filtering process is 
applied across an edge. It is achieved by ignoring pixels that are too different from the current 
pixel that is to be filtered. When the difference between the current pixel and its neighbouring 
pixel d is within a given threshold, f(d,S,D) is set equal to d; otherwise, f(d,S,D) is set equal to 0. 
Specifically, the strength S determines the maximum allowable difference, and damping D 
determines the sample positions that ignore the filter tap. 

3.7.3 Loop restoration filter 

Loop restoration (LR) filters are applied in units of 64×64, 128×128, or 256×256 blocks, and each 

unit is called a loop restoration unit (LRU). An LR filter may be applied on an LRU subject to one 

of three options: 1) when applying a Wiener filter, 2) when applying a self-guided filter (SGF), and 

3) when not applying any filter. LR is the final stage in the loop filtering pipeline. The filter 

coefficients for different filter taps are signalled in different bit depths. 

3.7.3.1 Separable symmetric Wiener filter 

In LR filtering, a 7×7 separable filter is used in a Wiener filter, which includes a 7-tap vertical filter 

and a 7-tap horizontal filter. Filtering of the reconstruction samples of a block is performed by 

applying the vertical and horizontal filters sequentially. After applying the vertical and horizontal 

filters, the final filtered reconstruction samples are generated. The filter coefficients are derived 

by an encoder and signalled into the bitstream. Since the Wiener filter is a symmetric filter, only 

three coefficients need to be signalled for a 7-tap filter, with the three mirrored coefficients derived 

as the same values. An example of a symmetric 7-tap Wiener filter is shown in Figure 24. 

 

Figure 24: Example of a symmetric 7-tap Wiener filter 

3.7.3.2 Self-guided filter 

Self-guided filters (SGFs) are designed to obtain two initial filtered frames, X1 and X2. The final 
restoration Xr is obtained as a combination of the degraded samples and the difference between 
the degraded sample and the coarse restoration as follows: 

 𝑋𝑟 = 𝑋 + 𝛼(𝑋1 − 𝑋) + 𝛽(𝑋2 − 𝑋) (14) 

At the encoder side, α and β are computed using least mean squares: 

 𝛼, 𝛽𝑇 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 (15) 

where A = {X1 − X, X2 − X}; b = y − x; and y is a vector recording original samples. 



 

 

X1 and X2 are obtained using guided filtering, and the filter is controlled by a radius parameter r 
and a noise parameter e, where greater values of r imply higher spatial variance, and greater 
values of e imply higher range variance. X1 and X2 can be described by {r1, e1} and {r2, e2}, 
respectively. To apply the filter, the encoder needs to signal the values of r1, e1, r2, e2, α, and β 
into the bitstream. 

The steps to derive the initial filtered frames, i.e., X1 and X2, are as follows: 

• A pair of (r, e) is given, which is signalled for the generation of X1 and X2 separately. 

• The mean value µ and variance σ2 of input samples in a (2r + 1) × (2r + 1) window are 

calculated, wherein the window is centered at the pixel to be filtered. 

• For each sample, the filtered sample is computed using 𝑥′ =
𝜎2

𝜎2+𝑒
𝑥 +

𝑒

𝜎2+𝑒
𝜇. 

• With the filtered samples x′, for each sample of an LRU, X1 and X2 are generated using 

the signalled (r1, e1) and (r2, e2), respectively. 

The generated X1 and X2 are used as input for the SGF. SGF is applied using Equation (14) and 

the signalled (α, β).  

3.7.4 Frame super-resolution 

To improve the perceptual quality of decoded pictures, a super-resolution process can be applied 
at low bitrates. The super-resolution process can be performed on a per-frame basis. First, at the 
encoder side, the source video is downscaled as a nonnormative procedure. Second, the 
downscaled video is encoded, followed by deblocking and CDEF filtering processes. Third, a 
linear upscaling process is applied as a normative procedure to convert the encoded video back 
to its original resolution. Finally, an LR filter is applied to further recover some lost details of the 
upscaled picture. The last two steps make up the super-resolving process; the deblocking and 
CDEF filters are applied at lower spatial resolution on the decoder side, after which the frames 
are passed through the super-resolution process. To reduce complexity regarding the use of line 
buffers in hardware implementation, the upscaling and downscaling processes are applied to the 
horizontal dimension only. 

3.7.5 Film grain synthesis 

The perceived quality of motion picture and TV content is often enhanced by the presence of film 
grain, but film grain is generally difficult to compress due to its high degree of randomness. 
However, film grain noise may be synthesized, to a high degree of perceptual accuracy, by a low-
order parameterized model that may be encoded more efficiently than the noise field itself. AV1 
includes a film grain synthesis tool, using a representation based on an autoregressive (AR) 
model, which enables the modelled noise to be synthesized and added back to the decoded 
denoised video signal at the decoder. The coding gain of the denoised video is higher while the 
visual quality of the final reconstructed video is well preserved. 

At the encoder, the film grain noise is removed from the input video by a denoising process, and 
the resulting denoised signal is encoded into the bitstream. The parameters of the noise model 
are then estimated in smooth areas of the denoised video, identified by analyzing its structure 
and intensity using an edge detector. The noise model parameters are also encoded into the 
bitstream. At the decoder, the noise model parameters are used to synthesize the film grain noise, 
which is then added to the decoded denoised video to produce the final reconstructed video signal.  

Several model parameters are signalled in the bitstream, including a lag value that defines the 
number of AR model coefficients, the values of AR model coefficients, sets of points that define 



 

 

a number of piece-wise linear scaling functions, and parameters for mapping the strength of the 
film grain noise in the chroma components. These parameters are quantized and signalled as 
integers, which include 64 bytes for the scaling function and 74 bytes for the AR coefficients. 

The film grain noise is modelled using a 2D causal autoregressive process with pseudo-Gaussian 
noise input. For each of the two chroma components, there is an additional AR coefficient to 
model the correlation with the collocated luma sample. 

The film grain noise synthesis for the luma component is formulated as follows: 

 𝑌′ = 𝑌 + 𝑓(𝑌) ∙ 𝐺𝐿 (16) 

where Y´ is the output luma sample with synthesized film grain noise, Y is the reconstructed luma 
sample before adding film grain noise, GL is the luma film grain noise sample, and f(Y) is a piece-
wise linear scaling function that is signalled in the bitstream. 

For chroma component C (Cb or Cr), the film grain noise synthesis is formulated as follows: 

 𝐶′ = 𝐶 + 𝑓(𝑢) ∙ 𝐺𝐶 (17) 

 𝑢 = 𝑏𝐶 ∙ 𝐶 + 𝑑𝐶 ∙ 𝑌av ∙ ℎ (18) 

where C´ is the output chroma sample with synthesized film grain noise, C is the reconstructed 
chroma sample before adding film grain noise, GC is the chroma film grain noise sample, f(u) is 
the scaling function, bC, dC and h are parameters used to model the dependency between the film 
grain noise strength and sample intensity, and Yav is the average of the collocated luma sample 
values. 

The synthesized film grain noise is added to the output pictures before sending them to the display. 
However, the synthesized film grain noise is not added to the reference pictures, because its 
random nature may reduce subsequent inter-prediction efficiency. 

When applying film grain noise synthesis, an autoregressive process is applied in a raster scan 
in order to generate one 64×64 luma, and two 32×32 chroma film grain noise templates. In the 
synthesis process, 32×32 luma and 16×16 chroma film grain noise blocks are taken from these 
templates at pseudo-random positions and added to the reconstructed samples. The 32×32 luma 
and 16×16 chroma film grain noise blocks are processed by applying sample-wise film grain noise 
scaling using the scaling functions described above and parameters contained in the bitstream. 
There is also an option to apply film grain noise blocks in an overlapping manner to reduce 
potential discontinuities at the film grain noise block boundaries. 

3.8 Screen content coding 

To improve the compression performance of screen-captured content, AV1 incorporates several 
coding tools, such as intra block copy (IntraBC) to handle repeated patterns in a screen picture, 
and palette mode to handle screen blocks with a limited number of colours. 

3.8.1 Intra block copy 

IntraBC [13]uses a vector to indicate a prediction block in the same picture as the current block. 
This vector is called a block vector (BV). BVs can be signalled in the bitstream and the precision 
for representing a BV is integer-point. The prediction process in IntraBC mode is similar to the 
prediction process in inter-picture prediction mode, with the main difference being that, in IntraBC, 



 

 

a predictor block is formed from the current picture before applying loop filters, while in inter-
picture prediction, the prediction block is formed from the reconstructed samples of a previously 
coded picture after applying loop filters. Therefore, IntraBC may be considered “motion 
compensation” within the current picture, essentially using the BV as an MV. 

When coding the current block, a flag indicating whether IntraBC is to be used is first signalled. If 
the flag indicates that IntraBC is to be used for coding the current block, then the BV difference is 
calculated by subtracting the value of the predicted BV from that of the current BV, and classified 
into one of the following four types: 1) the horizontal and vertical components are both zero; 2) 
the horizontal component is nonzero and the vertical component is zero; 3) the horizontal 
component is zero and the vertical component is nonzero; and 4) the horizontal and vertical 
components are both nonzero. The BV type information is signalled, followed by the BV difference 
value. 

While IntraBC is exceptionally effective for coding screen content, it introduces some challenges 
for hardware design. To facilitate hardware design, the following adjustments are adopted. 

• When IntraBC is used, the loop filters are disabled, including deblocking, CDEF, and LR 

filters. By doing this, a second picture buffer dedicated to enabling IntraBC is not needed. 

• To facilitate parallel decoding, the allowed prediction area is restricted. Specifically, if the 
top-left pixel coordinate of a superblock is (x0, y0), IntraBC prediction is available at pixel 
position (x, y) only if the value of the vertical coordinate y is less than y0 and the value of 
the horizontal coordinate x is less x0 + 2(y0 − y). 

• Due to hardware write-back delays, the immediate reconstructed area may not be 
accessible by IntraBC prediction, which may contain one or more superblocks. Hence, the 
allowed IntraBC prediction area is further restricted as follows: if the top-left pixel 
coordinate of a superblock is (x0, y0), IntraBC prediction is available at pixel position (x, y) 
only if the value of the vertical coordinate y is less than y0 and the value of the horizontal 
coordinate x is less than x0 + 2(y0 − y) − D, where D denotes the number of pixels in the 
horizontal direction from the left side of the current block. In AV1, D is set equal to twice 
the width of a superblock, i.e., 256 pixels. The IntraBC prediction area is shown in Figure 
25. 



 

 

Allowed 
search area

Disallowed 
search area

Current block
Not coded 

area
 

Figure 25: The prediction area for IntraBC mode, each block is a superblock  

 

3.8.2 Palette mode 

Palette mode may be applied when the current block is intra coded using the DC_PRED prediction 
mode. Palette mode may be applied for both luma and chroma blocks and can only be applied 
when the block size is greater than or equal to 8×8, and when both the width and height are less 
than or equal to 64.  

Several syntax elements are signalled when palette mode is enabled, including a flag 
has_palette_y that indicates whether palette mode is to be applied to the current coding block; 

a syntax palette_size_y_minus_2 that specifies the palette size; and a flag 

use_palette_color_cache_y that indicates whether the colour index is inherited for each 

entry of the palette. If the number of inherited palette entries is less than the signalled palette size, 
the remaining colour indices are explicitly signalled. For chroma colour components, 
has_palette_uv and palette_size_uv_minus_2 are shared between two chroma colour 

components, but the colour indices in the palette are signalled for Cb and Cr separately. 

The selected palette indices of a palette mode coded block are signalled and coded in a diagonal 
scan order, as shown in Figure 26. The scan follows a diagonal direction that starts from top-right 
and ends at the bottom-left. After all indices along a diagonal line are coded, the pointer moves 
to the top-right sample of the next diagonal line. The first index of the current Palette coded block 
is first coded using a separate syntax, color_index_map_y, and the remaining indices are 

coded using their top, left, and top-left neighbouring indices as context for entropy coding. 



 

 

 

Figure 26: Wavefront coding order of palette tokens 

3.8.3 Encoder content-type detection 

Frame-level content-type detection may be enabled and applied before encoding each frame. 

This content-type detection process analyzes the characteristics of the current input frame and 

suggests whether it likely contains screen content. Based on this suggestion, screen content 

coding tools such as IntraBC and palette mode may be turned on for coding the current frame. 

The content-type detection process is described as follows, wherein the frame width and height 

are denoted as FrameWidth and FrameHeight, respectively. 

Two counters, namely counter1 and counter2, are maintained in this content-type detection 

process. For each 16×16 luma block of the current frame, if there are only 2, 3, or 4 different luma 

values, then counter1 is first incremented by 1, and the variance of this 16×16 luma block is 

calculated. If the variance is greater than a predefined threshold value, then counter2 is 

incremented by 1. After all 16×16 luma blocks of the current frame are processed, counter1 is 

first compared with FrameWidth×FrameHeight/2560 to determine whether palette mode should 

be enabled for encoding the current frame, and counter2 is then compared with 

FrameWidth×FrameHeight/3072 to determine whether IntraBC should be enabled for encoding 

the current frame. 

4 References 

[1] https://aomedia.googlesource.com/aom/ 

[2] J. Han et al., “A Technical Overview of AV1,” Proc. IEEE, 2021, vol. 109, pp. 1435-1462. 

[3] L. Trudeau, N. Egge and D. Barr, “Predicting Chroma from Luma in AV1,” 2018 Data 
Compression Conference, 2018, pp. 374-382. 

[4] J. Han, Y. Xu and J. Bankoski, “A Dynamic Motion Vector Referencing Scheme for Video 
Coding,” 2016 IEEE International Conference on Image Processing (ICIP), 2016, pp. 
2032-2036. 

https://aomedia.googlesource.com/aom/


 

 

[5] S. Parker et al., “Global and Locally Adaptive Warped Motion Compensation in Video 
Compression,” 2017 IEEE International Conference on Image Processing (ICIP), 2017, 
pp. 275-279. 

[6] Y. Chen and D. Mukherjee, “Variable Block-Size Overlapped Block Motion Compensation 
in the Next Generation Open-Source Video Codec,” 2017 IEEE International Conference 
on Image Processing (ICIP), 2017, pp. 938-942. 

[7] S. Parker et al., “On Transform Coding Tools Under Development for VP10,” Proc. SPIE 
9971, Applications of Digital Image Processing XXXIX, 997119, Oct. 2016. 

[8] J.-M. Valin et al., “Daala: Building a Next-Generation Video Codec from Unconventional 
Technology,” in Proc. IEEE 18th Int. Workshop Multimedia Signal Process. (MMSP), Sep. 
2016, pp. 1–6. 

[9] J. Han, C. Chiang and Y. Xu, “A Level-Map Approach to Transform Coefficient Coding,” 
2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 3245-3249. 

[10] S. Midtskogen and J. Valin, “The AV1 Constrained Directional Enhancement Filter 
(CDEF),” 2018 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), 2018, pp. 1193-1197. 

[11] D. Mukherjee et al., “A Switchable Loop-Restoration with Side-Information Framework for 
the Emerging AV1 Video Codec,” 2017 IEEE International Conference on Image 
Processing (ICIP), 2017, pp. 265-269. 

[12] A. Norkin and N. Birkbeck, “Film Grain Synthesis for AV1 Video Codec,” 2018 Data 
Compression Conference, 2018, pp. 3-12. 

[13] J. Li et al., “Intra Block Copy for Screen Content in the Emerging AV1 Video Codec,” 2018 
Data Compression Conference, 2018, pp. 355-364. 


