el
TN T o v A

Alliancefor.Open'Media GO g|€
\

_ : Next Generationg@pensSource Digitél Media Technology for \,a' i
Y 0 | Everyone | ’ u YOUTUbe G
\' a2y T 2

ML Efforts in Google around Practical Codecs

Debargha Mukherjee, In-Suk Chong
Google

Google-Meta Workshop @ ICIP 2024, Abu Dhabi, UAE, October 30, 2024

e Introduction

e (NN Based In-loop filtering
o Switchable-models
o Guided CNN
o Overall Framework
o Hardware Design & Analysis

o Results

e ML Based Encoder Optimizations

e Conclusion

Introduction

Introduction

Challenges in Al based video codecs

e \ideo decoder has very challenging constraints!
o Silicon area for decoder ASIC in a mobile chipset is very limited.
o Should support throughput to handle 4K/60fps or 8K/30fps video.
m Throughput requirement for UHD video is similar to a large LLM (100 tokens/sec)
o From one gen to next, no more than doubling of area is expected for 30+% coding gain
m A small Al model that gives only 4% coding gain will blow that budget.
e Hybrid Al codecs most promising so far
o Augment a conventional pipeline with Al tools: In-loop filtering most promising (AOM, JVET)
m Decoder side inference must be very, very light.
e JPEG-AI - being standardized for images; first full Al image codec.
o But... video is a different beast altogether.

Introduction

Current State of Neural Codec Research

34.5

34.0

Ll mm ey (Eewwermr AWMEOET R SRR R ST R IR VAN PR, (3 TR SRS
° Most research has focused on
3 “better but bigger” models
. p r
_ . | Need more focus on methods _
o . . Adapted from:
Mainstream §---:-+-1 thatimprove RD without F---eeeeeemeeee
*%e ICIP-2021 PI
codec level increasing computation enary
1 D. Minnen, “Current
S5l \ > Frontiers in Neural
1 Image Compression”

—T T T — T T T — T T T — T
10! 102 10° 104

FLOPS (thousands / pixel) -

Introduction

Neural Image Codecs

34.44 ® Channel-Conditional
34.2- AVIF (speed=4)
34.0 o BPG

Hyperprior
33.8 © Factorized Prior
33.6- JPEG 2000
33.4 o JPEG
33.2

33.04
32.8+ S
32.6- s

§ 32.4-

o 32.2- .

wn

S 32,0 e A

®

= 31.8-

3 31.6 i L e

£31.4

[+

Z 31.24

[d

8 31.0
30.8+
30,64 Source:
30.4-

30.2/ ICIP-2021 Plenary

30.0

29.8- D. Minnen, “Current
Frontiers in Neural
Image Compression’

29.6-
29.4
ol JPEG
29.0

1

2 3 S o 20 3 oo 200 300 1,00
FLOPS (thousands / pixel)

Introduction

Hybrid conventional-Al codecs

e Hybrid Al codecs

o Neural (CNN based) in-loop filtering seems to be the most promising

m ~ 5K MAC/pixel: 3-4% coding gain [roughly equivalent to a full AV1 decoder]
m ~ 15-30K MAC/pixel: 5-6 % coding gain
m ~ 100K MAC/pixel: 7-8% coding gain
m ~ 500K-1M MAC/pixel: 9-10% coding gain
o INTRA, INTER_INTRA prediction has potential but so far seems lower
e For AVM:

o We have focused mostly on Neural in-loop filtering (Out-of-loop is also on the table)
o Need to get to a much lower MAC/pixel than the above
m Order of ~ 500-600 Mac/pixel

Introduction

Instance-adaptivity

How to achieve some of the coding gain through simpler means?

The key is instance-adaptivity
o Neural network parameters can change from frame to frame, and also within a frame based on
content characteristics - overfit the network for a given instance
o Exploit the fact that we can signal information in the bit-stream to convey the network adaptation.
o Inference architecture per instance should remain lightweight and common.

CNN in-loop-restoration with instance-adaptivity

adapt network parameters ;
A 4

CNN
Inference

Engine

Y

Degraded Image Corrected Imagé

4
N

CNN based In-loop Restoration

CNN Based In-loop Restoration

Switchable Models

CNN Based In-loop Restoration

Switchable CNNs [Framewise Adaptivity]

e A lightweight common inference engine operating on a per frame basis.
~600 MAC/pixel

Input
source
frame

https://ieeexplore.ieee.org/document/9897763

e Maintain a lightweight common inference

per frame.

In-loop filtering pipeline S|
A T !
a vy
i Improved CNN
Encode & Detzzlcéglgng * Loop- .| Inference |~
Reconstruct /
CDEF Restoration Engine
~ To:
i S Output /
(Opt|o?al) /7 1 "\ Reference
upscaiing Download weights and : .. Update
biases to inference TN
engine per frame :
engine operating on a per frame basis. -
e Parameter set (weights + biases) are signaled
CNN I CNN I CNN I
. . 2:1 3:2 1:1
e Naturally extends to use with superresolution c00 A
Separate models for each supported resolution ratio MACs/pixel MACs/pixel

https://ieeexplore.ieee.org/document/9897763

CNN Based In-loop Restoration

CNN Based In-loop Restoration

Guided CNN [Within-frame adaptivity]

e To achieve further instance adaptivity within a frame, we need to have a

mechanism to modify parameters of a neural network within a frame, using a

block-level signaling mechanism.
o Constrain the adaptation to only happen at the “last layer”

e Need to achieve a wide range of trade-offs between rate needed to signal the
adaptations and distortion.
e Enter Guided CNN

o A Convenient mechanism to achieve these objectives
o A generalization of CNN followed by ALF

CNN Based In-loop Restoration

Guided CNN [Within-frame adaptivity]

e Guided CNN produces M (> 1) output channels instead of 1.
o So far we have only really explored M = 2 output channels
e Final output is a weighted combination of M outputs, with signaled weights

o Weights (a, a,, .. a,,,) are signaled per quadtree decomposed blocksize
o Training loss function is modified to account for the best linear combination in a least squares sense

S - true source Evaluate (by least-squares) & explicitly signal linear
a
X - degraded source 0 combination weights: (a,, a,, ...) of output channels
r
° Feorr Training loss modification:
X CNN | CNN (I X0 | Least squares solution for weights:
Layer Layer || * N [a,a, ... ay, 1" = (RTR)'R"d,
s where R=[r; r ... 1,]
CNN with M output channels d=s-x
Ay Thenlosse=|d|°-d ' R(R'R)"R'd

https://ieeexplore.ieee.org/document/10078282

https://ieeexplore.ieee.org/document/10078282

CNN Based In-loop Restoration

Guided CNN [Within-frame adaptivity]

e Signaling of weights: (¢, a, ...) is
crucial for efficiency

e Use a quad-tree or similar block
partitioning structure to signal the
weights

e Achieves varying trade-offs between
signaled rate and distortion

CNN Based In-loop Restoration

Overall Framework

CNN Based In-loop Restoration

Overall Framework

e Frame-level on/off flag In-loop filtering pipeline
A

-

Improved
Loop-

Restoration

Deblocking +
CCS0/
CDEF

—

-

N
(Optional)

~

CNN
Inference

Engine

—>

A
1

upscaling

e Multiple Guided CNN models available sharing common
architecture
e Choose one Guided CNN model per frame using:
o Model Bucket: Derived implicity from frame QP, frame type
o Within Model Bucket Index: explicitly signaled to indicate
one of a few available models within the bucket
e Apply chosen guided CNN or none to produce output frame

Guided |I
CNN 1:1

600
MACs/pixel

To:
Output /
Reference
Update

CNN Based In-loop Restoration

Overall Framework

e Guided CNN specifics:

o Specific Model architecture inspired from U-Net: ~600 MACs/pixel

m 2D convolutions replaced by depthwise-separable convolutions

= Downscaling using a convolution layer with stride 2

= Upscaling using a transpose convolution layer and/or depth-to-space with stride 2
o 1 channel input
o 2 channel output to use the Guided CNN method with M =2

m 2 channels linearly combined to generate 1 output correction channel
o Single-level quad/bi-tree partitioning for weight signaling

m Each square block is further partitioned once using NONE, HORZ, VERT or SPLIT
o Total #models for 1:1 case:

m 6 QP ranges x 2 frame types (INTER/INTRA) x 3 models per bucket = 36

CNN Based In-loop Restoration

CNN Based In-loop Restoration

Results
(1) float32 Models
e Baseline: AVM v-7 anchor on Config | Overall (w/o B2) Class A1_4K
Common Test Conditions PSNR YUV |VMAF PSNR YUV |VMAF
e One of the smallest CNN models |4 -1.48% -3.78% |-2.12% -5.93%
ever used -approaching the RA -1.21% -2.34% -1.90% -4.55%

trade-off of a conventional tool. (2) int10 Models
e Notable points:

)) Config Overall (w/o B2) Class A1_4K
o VMAF gains are higher
o Higher resolution gains are higher PSNR YUV | VMAF PSNR YUV | VMAF
Al -1.44% -2.89% -2.10% -4.79%

RA -1.17% -2.74% -2.21% -5.02%

CNN Based In-loop Restoration

Hardware Design &
Analysis

CNN Based In-loop Restoration

Model Integerization

e Quantization - crucial for fixed point hardware

implementation e et kil
e HW complexity reduced by quantizing different
aspects of the model:
o Weights Quantization: Quantize the weights and any other =
storable params across layers. .
o Activation Quantization: Quantize inter-connects between Y
model layers with activations quantization. 0 s s e 002 m0 s e
e Maintain performance while reducing complexity in =~ ——0H
‘tWO_WayS : 75 H0— gkeras.quantized_bits(4, 1, alpha=auto_po2)
o Quantization aware training (QAT): - | |
m Train model weights while being aware of quantization. 0ol
m Open sourced QKeras framework used for QAT. 251
o Heterogeneous quantization: 501

=75

m Individual layers are optimally quantized to maintain el | | |
model accuracy oo 75|80 35 o0 25)

CNN Based In-loop Restoration

Model Integerization

e (Quantization Aware Training:
o Simulated Quantization during Training

Rele uint8 output ReLU6 @ outp
3

Y
uint8

+> D
uint32 N K
CGoosee) L <

conv conv

uint8 uint8

Inference Training

CNN Based In-loop Restoration

Model Integerization

e Optimize bit allocation for weights and activations on a per layer basis

e Example quantization schema:
o All layer activations and most weights are allocated 10-bits
o 16-bits allocated to pointwise layer weights in the UNet encoder (x4 layers)
o 20-bits allocated to transposed conv2D layer weights (x4 layers)

e Different architecture study.

CNN Based In-loop Restoration

Hardware Analysis

10-bit quantized models are
implemented with TSMC 5nm
technology

The HW synthesis is performed
based on pre-set throughput
requirements

Clock Frequency (GHz) 1.200
Pixel Rate (pixel/clk) 1.000
64x64 Block Rate

(blk/sec) 292,968.75
4K FPS (frame/sec) 144.68

CNN Based In-loop Restoration

Hardware Analysis

Synthesis Results

Logic Design
FIFO Connection
Internal Storage

Total (gates)

Total (um*2)

Logic gates SRAM (bit) Total Area in #Gates
1,362,433 0 1,362,433
170,808 0 170,808
121,656 118,504 240,160
1,654,897 118,504 1,773,401
53,172 3,808 56,979

4
N

ML Based Encoder Optimizations

ML Based Encoder Optimizations

Partition Search

ML Based Encoder Optimizations

AVM partitioning scheme

R | R R R R R R
R | R R | R R R R RIR| RR RR RR

ROUIR R R R R

R R
PARTITION_NONE PARTITION_SPLIT PARTITION_HORZ PARTITION_VERT PARTITION_HORZ_H PARTITION_VERT_H PARTITION_HORZ_4A PARTITION_HORZ 48 PARTITION_VERT_4A PARTITION_VERT_48
A N 4

(. Y
H-partitions Uneven 4-way

e Recursive partitioning scheme in AVM is expensive!
O Brute-forth search + ad hoc pruning
o0 AVM anchor_v7 vs AV1:
m 38x enc-time in Al ,23x enc-time in RA

e Long pole:
o In lower QP, partition search can reach leaf nodes, encoding time could grow 110x

(gp 110 vs 235)

ML Based Encoder Optimizations

ML-based Pruning, 4-Way Split Detection

e ML task: Predicting if a given block is a 4-way split (both hor and ver split)

e Ternary Pruning Decision:
o Split: ml_output > threshold_high
o No Split: ml_output < threshold_low
o Not Sure: otherwise

Rdo eval 0
PARTITION
VERT

Rdo eval on
PARTITION_
NONE

Rdo eval on Rdo eval on
PARTITION_ H-partitions
HORZ P

oy | Current Rdo eval on
L ; I block

| onventional | ML Uneven 4-way
| Pruning I——D—' i Thresholding

| Output ! nference

b e e I

Note: For block sizes that don’t normatively support 4-way split (below 128x128), split decision is
‘emulated’ by a combination of hor split followed by ver split in its sub-blocks or vise-versa.

Rdo eval on
PARTITION_
SPLIT

ML Based Encoder Optimizations

ML-based Pruning, Small DNN Architecture (Intra)

e Small DNN with 2 hidden layers.
O 4 separately trained DNNs invoked for block sizes
[| 64x64 / 32x32 / 16x16 / 8x8
O Other block size

Hidden layer 1: Hidden layer 2:
32 nodes and 16 nodes and

I
: Output layer with
|
Relu activation I Relu Activation
I
|
|

pus (ayer Wit sigmoid activation

I
I
|
31 features {
|
|
|
I
I

[] No ML, and encoder remains unmodified.

Prediction
Probability

e Compute 37 Input Features

For 13 primary primary intra prediction modes
For the current / 4 sub blocks

SSE and Variance (VAR) of the top 3 modes

QP, neighbor size and availability information for the block

o O O O

® 30% long pole speed up with 0.05% loss

ML Based Encoder Optimizations

ML-based Pruning, Small DNN Architecture (Inter)

e Small DNN with 2 hidden layers.
O 4 separately trained DNNs invoked for block sizes

|
B 64x64/32x32/16x16/8x8 Input layer with | Hidden layer 1: Hidden layer 2:

I
: Output layer with
o Other block size 31 features | SamudesEnc I 16 iodes and
I
I
I
I

sigmoid activation
I Relu activation Relu Activation

|
[] No ML, and encoder remains unmodified. {
|
|

e 31 Input Features: X0 “'
For the current / 4 sub blocks X1 —(O¢&
NNZ (# of nonzero coefficients)

NZMAX (maximum level of nonzero coefficient)

PSNR/ SATD

Magnitude and angle of the motion vector x30 —()
|
|

RD multiplication

Prediction
Probability

o
o
(@]
o
o
o

® 35% long-pole speed up with 0.06% loss

Conclusion

Conclusion

Summary

e Coding Tools
o Constraints in prevalent video decoder HW architectures make incorporating Al based tools
extremely challenging
o We have taken the first steps into bringing neural Al tools into a mainstream video codec at
complexity approaching that of a conventional tool
o Developed one of the smallest neural models reported in literature providing 1+ % gain,
combining multiple switchable models/frame with guided CNN within frame
o WIP -improving gains and reducing hardware footprint further
e Encoder Optimizations
o ML methods shown to be useful in bypassing complex RD search in modern codecs

m Partition search speed-up
m Many more opportunities

Thank You

Google

&3 YouTube G

