
ML Efforts in Google around Practical Codecs

 Debargha Mukherjee, In-Suk Chong

 Google

Google-Meta Workshop @ ICIP 2024, Abu Dhabi, UAE, October 30, 2024

● Introduction

● CNN Based In-loop filtering
○ Switchable-models

○ Guided CNN

○ Overall Framework

○ Hardware Design & Analysis

○ Results

● ML Based Encoder Optimizations

● Conclusion

Outline

Introduction

Challenges in AI based video codecs

● Video decoder has very challenging constraints!
○ Silicon area for decoder ASIC in a mobile chipset is very limited.
○ Should support throughput to handle 4K/60fps or 8K/30fps video.

■ Throughput requirement for UHD video is similar to a large LLM (100 tokens/sec)
○ From one gen to next, no more than doubling of area is expected for 30+% coding gain

■ A small AI model that gives only 4% coding gain will blow that budget.
● Hybrid AI codecs most promising so far

○ Augment a conventional pipeline with AI tools: In-loop filtering most promising (AOM, JVET)
■ Decoder side inference must be very, very light.

● JPEG-AI - being standardized for images; first full AI image codec.
○ But … video is a different beast altogether.

Introduction

Current State of Neural Codec Research
Introduction

Most research has focused on
“beŵer but bigger” models

Need more focus on methods
that improve RD without
increasing computation

Adapted from:

ICIP-2021 Plenary

D. Minnen, “Current
Frontiers in Neural
Image Compression”

Mainstream
codec level

Neural Image Codecs
Introduction

JPEG

JPEG 2000

BPG
AVIF

Source:

ICIP-2021 Plenary

D. Minnen, “Current
Frontiers in Neural
Image Compression”

Hybrid conventional-AI codecs

● Hybrid AI codecs
○ Neural (CNN based) in-loop filtering seems to be the most promising

■ ~ 5K MAC/pixel: 3-4% coding gain [roughly equivalent to a full AV1 decoder]
■ ~ 15-30K MAC/pixel: 5-6 % coding gain
■ ~ 100K MAC/pixel: 7-8% coding gain
■ ~ 500K-1M MAC/pixel: 9-10% coding gain

○ INTRA, INTER_INTRA prediction has potential but so far seems lower
● For AVM:

○ We have focused mostly on Neural in-loop filtering (Out-of-loop is also on the table)
○ Need to get to a much lower MAC/pixel than the above

■ Order of ~ 500-600 Mac/pixel

Introduction

Instance-adaptivity

● How to achieve some of the coding gain through simpler means?
● The key is instance-adaptivity

○ Neural network parameters can change from frame to frame, and also within a frame based on
content characteristics - overfit the network for a given instance

○ Exploit the fact that we can signal information in the bit-stream to convey the network adaptation.
○ Inference architecture per instance should remain lightweight and common.

● CNN in-loop-restoration with instance-adaptivity

Introduction

CNN
Inference

Engine

Side-information (SI) to
adapt network parameters

Degraded Image Corrected Image

CNN based In-loop Restoration

Switchable Models

CNN Based In-loop Restoration

CNN Based In-loop Restoration

● Maintain a lightweight common inference
engine operating on a per frame basis.

● Parameter set (weights + biases) are signaled
per frame.

● Naturally extends to use with superresolution
○ Separate models for each supported resolution ratio

CNN
3:2

Download weights and
biases to inference
engine per frame

600
MACs/pixel

Improved
Loop-

Restoration
n/d

To:
Output /
Reference
Update

(Optional)
upscaling

CNN
Inference

Engine

Deblocking +
CCSO/
CDEF

CNN
2:1

600
MACs/pixel

CNN
1:1

600
MACs/pixel

https://ieeexplore.ieee.org/document/9897763

Switchable CNNs [Framewise Adaptivity]

n/d Encode &
Reconstruct

Input
source
frame

In-loop filtering pipeline SI

● A lightweight common inference engine operating on a per frame basis.
○ ~600 MAC/pixel

https://ieeexplore.ieee.org/document/9897763

Guided CNN

CNN Based In-loop Restoration

Guided CNN [Within-frame adaptivity]

● To achieve further instance adaptivity within a frame, we need to have a
mechanism to modify parameters of a neural network within a frame, using a
block-level signaling mechanism.

○ Constrain the adaptation to only happen at the “last layer”
● Need to achieve a wide range of trade-offs between rate needed to signal the

adaptations and distortion.
● Enter Guided CNN

○ A Convenient mechanism to achieve these objectives
○ A generalization of CNN followed by ALF

CNN Based In-loop Restoration

Guided CNN [Within-frame adaptivity]

● Guided CNN produces M (> 1) output channels instead of 1.
○ So far we have only really explored M = 2 output channels

● Final output is a weighted combination of M outputs, with signaled weights
○ Weights (a0, a1, … aM-1) are signaled per quadtree decomposed blocksize
○ Training loss function is modified to account for the best linear combination in a least squares sense

CNN Based In-loop Restoration

Evaluate (by least-squares) & explicitly signal linear
combination weights: (a0, a1, …) of output channels

https://ieeexplore.ieee.org/document/10078282

CNN
Layer

CNN
Layer

x
r0

rM-1

a0

aM-1

rcorr xcorr

CNN with M output channels

s - true source
x - degraded source

Training loss modification:
Least squares solution for weights:
[a0 a1 … aM-1]

T = (RTR)-1RTd,
 where R = [r0 r1 … rM-1]
 d = s - x
Then loss e = |d|2 - dTR(RTR)-1RTd

https://ieeexplore.ieee.org/document/10078282

Guided CNN [Within-frame adaptivity]

● Signaling of weights: (a0, a1, …) is
crucial for efficiency

● Use a quad-tree or similar block
partitioning structure to signal the
weights

● Achieves varying trade-offs between
signaled rate and distortion

CNN Based In-loop Restoration

Overall Framework

CNN Based In-loop Restoration

Overall Framework

● Multiple Guided CNN models available sharing common
architecture

● Choose one Guided CNN model per frame using:
○ Model Bucket: Derived implicity from frame QP, frame type
○ Within Model Bucket Index: explicitly signaled to indicate

one of a few available models within the bucket
● Apply chosen guided CNN or none to produce output frame

CNN Based In-loop Restoration

Improved
Loop-

Restoration
n/d To:

Output /
Reference
Update(Optional)

upscaling

CNN
Inference

Engine

Deblocking +
CCSO/
CDEF

In-loop filtering pipeline

Use
CNN

?

Guided
CNN 1:1

600
MACs/pixel

Y

N

● Frame-level on/off flag

Overall Framework

● Guided CNN specifics:
○ Specific Model architecture inspired from U-Net: ~600 MACs/pixel

■ 2D convolutions replaced by depthwise-separable convolutions
■ Downscaling using a convolution layer with stride 2
■ Upscaling using a transpose convolution layer and/or depth-to-space with stride 2

○ 1 channel input
○ 2 channel output to use the Guided CNN method with M = 2

■ 2 channels linearly combined to generate 1 output correction channel
○ Single-level quad/bi-tree partitioning for weight signaling

■ Each square block is further partitioned once using NONE, HORZ, VERT or SPLIT
○ Total #models for 1:1 case:

■ 6 QP ranges x 2 frame types (INTER/INTRA) x 3 models per bucket = 36

CNN Based In-loop Restoration

Results

CNN Based In-loop Restoration

Results
CNN Based In-loop Restoration

Config Overall (w/o B2) Class A1_4K

PSNR YUV VMAF PSNR YUV VMAF

AI -1.48% -3.78% -2.12% -5.93%

RA -1.21% -2.34% -1.90% -4.55%

(1) float32 Models

Config Overall (w/o B2) Class A1_4K

PSNR YUV VMAF PSNR YUV VMAF

AI -1.44% -2.89% -2.10% -4.79%

RA -1.17% -2.74% -2.21% -5.02%

(2) int10 Models

● Baseline: AVM v-7 anchor on
Common Test Conditions

● One of the smallest CNN models
ever used -approaching the
trade-off of a conventional tool.

● Notable points:
○ VMAF gains are higher
○ Higher resolution gains are higher

Hardware Design &
Analysis

CNN Based In-loop Restoration

Model Integerization

● Quantization - crucial for fixed point hardware
implementation

● HW complexity reduced by quantizing different
aspects of the model:

○ Weights Quantization: Quantize the weights and any other
storable params across layers.

○ Activation Quantization: Quantize inter-connects between
model layers with activations quantization.

● Maintain performance while reducing complexity in
two-ways:

○ Quantization aware training (QAT):
■ Train model weights while being aware of quantization.
■ Open sourced QKeras framework used for QAT.

○ Heterogeneous quantization:
■ Individual layers are optimally quantized to maintain

model accuracy

CNN Based In-loop Restoration

Model Integerization
CNN Based In-loop Restoration

● Quantization Aware Training:
○ Simulated Quantization during Training

Inference Training

Model Integerization

● Optimize bit allocation for weights and activations on a per layer basis
● Example quantization schema:

○ All layer activations and most weights are allocated 10-bits
○ 16-bits allocated to pointwise layer weights in the UNet encoder (x4 layers)
○ 20-bits allocated to transposed conv2D layer weights (x4 layers)

● Different architecture study.

CNN Based In-loop Restoration

Hardware Analysis
CNN Based In-loop Restoration

● 10-bit quantized models are
implemented with TSMC 5nm
technology

● The HW synthesis is performed
based on pre-set throughput
requirements

Clock Frequency (GHz) 1.200

Pixel Rate (pixel/clk) 1.000

64x64 Block Rate
(blk/sec) 292,968.75

4K FPS (frame/sec) 144.68

Hardware Analysis
CNN Based In-loop Restoration

Synthesis Results

Logic gates SRAM (bit) Total Area in #Gates

Logic Design 1,362,433 0 1,362,433

FIFO Connection 170,808 0 170,808

Internal Storage 121,656 118,504 240,160

Total (gates) 1,654,897 118,504 1,773,401

Total (um^2) 53,172 3,808 56,979

ML Based Encoder Optimizations

Partition Search

ML Based Encoder Optimizations

ML Based Encoder Optimizations

● Recursive partitioning scheme in AVM is expensive!
○ Brute-forth search + ad hoc pruning
○ AVM anchor_v7 vs AV1:

■ 38x enc-time in AI ,23x enc-time in RA
● Long pole:

○ In lower QP, partition search can reach leaf nodes, encoding time could grow ↑10x
(qp 110 vs 235)

AVM partitioning scheme

ML Based Encoder Optimizations

ML-based Pruning, 4-Way Split Detection

● ML task: Predicting if a given block is a 4-way split (both hor and ver split)

● Ternary Pruning Decision:
○ Split: ml_output > threshold_high
○ No Split: ml_output < threshold_low
○ Not Sure: otherwise

Note: For block sizes that don’t normatively support 4-way split (below 128x128), split decision is
‘emulated’ by a combination of hor split followed by ver split in its sub-blocks or vise-versa.

ML Based Encoder Optimizations

ML-based Pruning, Small DNN Architecture (Intra)

● Small DNN with 2 hidden layers.
○ 4 separately trained DNNs invoked for block sizes

■ 64x64 / 32x32 / 16x16 / 8x8

○ Other block size
■ No ML, and encoder remains unmodified.

● Compute 37 Input Features
○ For 13 primary primary intra prediction modes
○ For the current / 4 sub blocks
○ SSE and Variance (VAR) of the top 3 modes
○ QP, neighbor size and availability information for the block

● 30% long pole speed up with 0.05% loss

ML Based Encoder Optimizations

ML-based Pruning, Small DNN Architecture (Inter)

● Small DNN with 2 hidden layers.
○ 4 separately trained DNNs invoked for block sizes

■ 64x64 / 32x32 / 16x16 / 8x8

○ Other block size
■ No ML, and encoder remains unmodified.

● 31 Input Features:
○ For the current / 4 sub blocks
○ NNZ (# of nonzero coefficients)
○ NZMAX (maximum level of nonzero coefficient)
○ PSNR/ SATD
○ Magnitude and angle of the motion vector
○ RD multiplication

● 35% long-pole speed up with 0.06% loss

Conclusion

Summary

● Coding Tools
○ Constraints in prevalent video decoder HW architectures make incorporating AI based tools

extremely challenging
○ We have taken the first steps into bringing neural AI tools into a mainstream video codec at

complexity approaching that of a conventional tool
○ Developed one of the smallest neural models reported in literature providing 1+ % gain,

combining multiple switchable models/frame with guided CNN within frame
○ WIP - improving gains and reducing hardware footprint further

● Encoder Optimizations
○ ML methods shown to be useful in bypassing complex RD search in modern codecs

■ Partition search speed-up
■ Many more opportunities

Conclusion

Thank You

