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Introduction



Challenges in AI based video codecs 

● Video decoder has very challenging constraints!
○ Silicon area for decoder ASIC in a mobile chipset is very limited.
○ Should support throughput to handle 4K/60fps or 8K/30fps video.

■ Throughput requirement for UHD video is similar to a large LLM (100 tokens/sec)
○ From one gen to next, no more than doubling of area is expected for 30+% coding gain

■ A small AI model that gives only 4% coding gain will blow that budget.
● Hybrid AI codecs most promising so far

○ Augment a conventional pipeline with AI tools: In-loop filtering most promising (AOM, JVET)
■ Decoder side inference must be very, very light.

● JPEG-AI - being standardized for images; first full AI image codec.
○ But … video is a different beast altogether.
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Current State of Neural Codec Research 
Introduction

Most research has focused on 
“beŵer but bigger” models

Need more focus on methods 
that improve RD without 
increasing computation

Adapted from:
 
ICIP-2021 Plenary
 
D. Minnen, “Current 
Frontiers in Neural 
Image Compression”

Mainstream 
codec level



Neural Image Codecs 
Introduction

JPEG

JPEG 2000

BPG
AVIF

Source:

ICIP-2021 Plenary
 
D. Minnen, “Current 
Frontiers in Neural 
Image Compression”



Hybrid conventional-AI codecs

● Hybrid AI codecs
○ Neural (CNN based) in-loop filtering seems to be the most promising

■ ~ 5K MAC/pixel: 3-4% coding gain [roughly equivalent to a full AV1 decoder]
■ ~ 15-30K MAC/pixel: 5-6 % coding gain
■ ~ 100K MAC/pixel: 7-8% coding gain
■ ~ 500K-1M MAC/pixel: 9-10% coding gain

○ INTRA, INTER_INTRA prediction has potential but so far seems lower
● For AVM:

○ We have focused mostly on Neural in-loop filtering (Out-of-loop is also on the table)
○ Need to get to a much lower MAC/pixel than the above

■ Order of ~ 500-600 Mac/pixel
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Instance-adaptivity

● How to achieve some of the coding gain through simpler means?
● The key is instance-adaptivity

○ Neural network parameters can change from frame to frame, and also within a frame based on 
content characteristics - overfit the network for a given instance

○ Exploit the fact that we can signal information in the bit-stream to convey the network adaptation.
○ Inference architecture per instance should remain lightweight and common.

● CNN in-loop-restoration with instance-adaptivity

Introduction
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CNN based In-loop Restoration



Switchable Models
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CNN Based In-loop Restoration

● Maintain a lightweight common inference 
engine operating on a per frame basis.

● Parameter set (weights + biases) are signaled 
per frame.

● Naturally extends to use with superresolution
○ Separate models for each supported resolution ratio
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https://ieeexplore.ieee.org/document/9897763

Switchable CNNs [Framewise Adaptivity]
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Reconstruct 

Input 
source
frame

In-loop filtering pipeline SI

● A lightweight common inference engine operating on a per frame basis.
○ ~600 MAC/pixel

https://ieeexplore.ieee.org/document/9897763


Guided CNN

CNN Based In-loop Restoration



Guided CNN [Within-frame adaptivity]

● To achieve further instance adaptivity within a frame, we need to have a 
mechanism to modify parameters of a neural network within a frame, using a 
block-level signaling mechanism. 

○ Constrain the adaptation to only happen at the “last layer”
● Need to achieve a wide range of trade-offs between rate needed to signal the 

adaptations and distortion.
● Enter Guided CNN

○ A Convenient mechanism to achieve these objectives
○ A generalization of CNN followed by ALF

CNN Based In-loop Restoration



Guided CNN [Within-frame adaptivity]

● Guided CNN produces M (> 1) output channels instead of 1.
○ So far we have only really explored M = 2 output channels

● Final output is a weighted combination of M outputs, with signaled weights
○ Weights (a0, a1, … aM-1) are signaled per quadtree decomposed blocksize
○ Training loss function is modified to account for the best linear combination in a least squares sense

CNN Based In-loop Restoration

Evaluate (by least-squares) & explicitly signal linear 
combination weights: (a0, a1, …) of output channels

https://ieeexplore.ieee.org/document/10078282

CNN 
Layer

CNN 
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rcorr xcorr

CNN with M output channels

s - true source
x - degraded source

Training loss modification:
Least squares solution for weights:
[a0 a1 … aM-1]

T = (RTR)-1RTd,
          where R = [r0  r1 … rM-1]
                     d = s - x
Then loss e = |d|2 - dTR(RTR)-1RTd

https://ieeexplore.ieee.org/document/10078282


Guided CNN [Within-frame adaptivity]

● Signaling of weights: (a0, a1, …) is 
crucial for efficiency

● Use a quad-tree or similar block 
partitioning structure to signal the 
weights

● Achieves varying trade-offs between 
signaled rate and distortion

CNN Based In-loop Restoration



Overall Framework
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Overall Framework

● Multiple Guided CNN models available sharing common 
architecture

● Choose one Guided CNN model per frame using:
○ Model Bucket: Derived implicity from frame QP, frame type
○ Within Model Bucket Index: explicitly signaled to indicate 

one of a few available models within the bucket
● Apply chosen guided CNN or none to produce output frame

CNN Based In-loop Restoration
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Overall Framework

● Guided CNN specifics:
○ Specific Model architecture inspired from U-Net: ~600 MACs/pixel

■ 2D convolutions replaced by depthwise-separable convolutions
■ Downscaling using a convolution layer with stride 2
■ Upscaling using a transpose convolution layer and/or depth-to-space with stride 2

○ 1 channel input
○ 2 channel output to use the Guided CNN method with M = 2

■ 2 channels linearly combined to generate 1 output correction channel
○ Single-level quad/bi-tree partitioning for weight signaling

■ Each square block is further partitioned once using NONE, HORZ, VERT or SPLIT
○ Total #models for 1:1 case:

■ 6 QP ranges x 2 frame types (INTER/INTRA) x 3 models per bucket = 36

CNN Based In-loop Restoration
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Results
CNN Based In-loop Restoration

Config Overall (w/o B2) Class A1_4K

PSNR YUV VMAF PSNR YUV VMAF

AI -1.48% -3.78% -2.12% -5.93%

RA -1.21% -2.34% -1.90% -4.55%

(1) float32 Models

Config Overall (w/o B2) Class A1_4K

PSNR YUV VMAF PSNR YUV VMAF

AI -1.44% -2.89% -2.10% -4.79%

RA -1.17% -2.74% -2.21% -5.02%

(2) int10 Models

● Baseline: AVM v-7 anchor on 
Common Test Conditions

● One of the smallest CNN models 
ever used -approaching the 
trade-off of a conventional tool.

● Notable points:
○ VMAF gains are higher
○ Higher resolution gains are higher



Hardware Design & 
Analysis
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Model Integerization

● Quantization - crucial for fixed point hardware 
implementation

● HW complexity reduced by quantizing different 
aspects of the model:

○ Weights Quantization: Quantize the weights and any other 
storable params across layers. 

○ Activation Quantization: Quantize inter-connects between 
model layers with activations quantization.

● Maintain performance while reducing complexity in 
two-ways:

○ Quantization aware training (QAT):
■ Train model weights while being aware of quantization.
■ Open sourced QKeras framework used for QAT.

○ Heterogeneous quantization:
■ Individual layers are optimally quantized to maintain 

model accuracy

CNN Based In-loop Restoration



Model Integerization
CNN Based In-loop Restoration

● Quantization Aware Training: 
○ Simulated Quantization during Training

Inference Training



Model Integerization

● Optimize bit allocation for weights and activations on a per layer basis
● Example quantization schema:

○ All layer activations and most weights are allocated 10-bits
○ 16-bits allocated to pointwise layer weights in the UNet encoder (x4 layers)
○ 20-bits allocated to transposed conv2D layer weights (x4 layers)

● Different architecture study.

CNN Based In-loop Restoration



Hardware Analysis
CNN Based In-loop Restoration

● 10-bit quantized models are 
implemented with TSMC 5nm 
technology

● The HW synthesis is performed 
based on pre-set throughput 
requirements  

Clock Frequency (GHz) 1.200

Pixel Rate (pixel/clk) 1.000

64x64 Block Rate 
(blk/sec) 292,968.75

4K FPS (frame/sec) 144.68



Hardware Analysis
CNN Based In-loop Restoration

Synthesis Results

Logic gates SRAM (bit) Total Area in #Gates

Logic Design 1,362,433 0 1,362,433

FIFO Connection 170,808 0 170,808

Internal Storage 121,656 118,504 240,160

Total (gates) 1,654,897 118,504 1,773,401

Total (um^2) 53,172 3,808 56,979



ML Based Encoder Optimizations



Partition Search

ML Based Encoder Optimizations



ML Based Encoder Optimizations

● Recursive partitioning scheme in AVM is expensive!
○ Brute-forth search + ad hoc pruning
○ AVM anchor_v7 vs AV1:

■ 38x enc-time in AI ,23x enc-time in RA
● Long pole: 

○ In lower QP, partition search can reach leaf nodes, encoding time could grow ↑10x 
(qp 110 vs 235)

AVM partitioning scheme



ML Based Encoder Optimizations

ML-based Pruning, 4-Way Split Detection

● ML task: Predicting if a given block is a 4-way split (both hor and ver split)

● Ternary Pruning Decision:
○ Split: ml_output > threshold_high
○ No Split: ml_output < threshold_low
○ Not Sure: otherwise

Note: For block sizes that don’t normatively support 4-way split (below 128x128), split decision  is 
‘emulated’ by a combination of hor split followed by ver split in its sub-blocks or vise-versa.



ML Based Encoder Optimizations

ML-based Pruning, Small DNN Architecture (Intra)

● Small DNN with 2 hidden layers. 
○ 4 separately trained DNNs invoked for block sizes

■ 64x64 / 32x32 / 16x16 / 8x8

○ Other block size
■ No ML, and encoder remains unmodified. 

● Compute 37 Input Features 
○ For 13 primary primary intra prediction modes 
○ For the current / 4 sub blocks
○ SSE and Variance (VAR) of the top 3 modes 
○ QP, neighbor size and availability information for the block

● 30% long pole speed up with 0.05% loss



ML Based Encoder Optimizations

ML-based Pruning, Small DNN Architecture (Inter)

● Small DNN with 2 hidden layers. 
○ 4 separately trained DNNs invoked for block sizes

■ 64x64 / 32x32 / 16x16 / 8x8

○ Other block size
■ No ML, and encoder remains unmodified. 

● 31 Input Features:
○ For the current / 4 sub blocks
○ NNZ (# of nonzero coefficients)
○ NZMAX (maximum level of nonzero coefficient)
○ PSNR/ SATD
○ Magnitude and angle of the motion vector
○ RD multiplication

● 35% long-pole speed up with 0.06% loss
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Summary

● Coding Tools
○ Constraints in prevalent video decoder HW architectures make incorporating AI based tools 

extremely challenging 
○ We have taken the first steps into bringing neural AI tools into a mainstream video codec at 

complexity approaching that of a conventional tool
○ Developed one of the smallest neural models reported in literature providing 1+ % gain, 

combining multiple switchable models/frame with guided CNN within frame
○ WIP - improving gains and reducing hardware footprint further

● Encoder Optimizations
○ ML methods shown to be useful in bypassing complex RD search in modern codecs

■ Partition search speed-up
■ Many more opportunities 

Conclusion
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