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Abstract 
This document is the Call for Proposals (CfP) on Static Polygonal Mesh Coding technology, which 
targets lossless and lossy compression of static 3D polygonal meshes. It provides the timeline of 
the project, details on the test content, and all information related to the submission of a proposal 
to this CfP. 

1 Introduction 
3D computer graphics and modeling are widely used in areas like gaming, filmmaking, animation, 
geospatial applications, online commerce, AR and VR applications, entertainment, architecture, 
manufacturing, and cultural heritage applications. 3D objects are commonly modeled as polygonal 
meshes. A mesh surface is described by a collection of vertices, their positions in 3D space, and 
their connectivity via edges that compose polygonal faces. A mesh may have additional attributes 
associated with its vertices, edges, faces, and/or corners. Two common types of attributes that 
affect rendering are normal vectors and texture coordinates. Normal vectors affect how the light 
bounces off the mesh. Texture coordinates map a 3D mesh surface onto a 2D plane and define how 
to apply texture maps onto the mesh surface. Such mesh representation is firmly established in 3D 
formats (e.g. OBJ [1], glTF [2], USD [3]), and rendering APIs (e.g. OpenGL [4], Direct3D [5], 
Vulkan [6]). Demand for transmission and storage of 3D meshes will continue to grow since more 
and more digital experiences start taking advantage of augmented reality or are completely moving 
into immersive 3D environments. 
Polygonal mesh compression tools aim at providing efficient transmission and storage. 
Compression for transmission can reduce network bandwidth requirements, resulting in shorter 
transmission times and delivery of more detailed 3D meshes with higher visual quality. 
Compression for storage can reduce data center costs and enable client devices to cache more 3D 
data.  



 2 

Current state of the art compression libraries target mainly manifold triangular 3D meshes that are 
intended for Graphics Processing Unit (GPU) rendering. These libraries achieve compression by 
only quantizing vertex attributes with a minimal loss of visual quality, exploiting regular structures 
and patterns in the mesh, and through entropy coding. This does not result in optimal rate distortion 
performance for some applications such as streaming.  
It is desirable that next generation mesh compression tools and standards would offer improved 
compression efficiency while overcoming existing limitations. Such tools and standards should 
also support efficient lossless and lossy compression of all types of polygonal 3D meshes. This 
includes meshes with quads and/or higher order polygonal faces commonly used in authoring 
software, and non-manifold meshes with, potentially, degenerate faces. Additional functionalities, 
such as quality or spatial scalability, error resilience, and parallel encoding or decoding, are highly 
desirable (see Section 7 for more details). 
AOM members are invited to submit proposals in response to this Call for Proposals (CfP). The 
submissions will be evaluated based on the objective and subjective metrics described in Section 6. 
Evaluation results will be anonymized before being shared within the Volumetric Visual Media 
(VVM) Working Group (WG). Proponents shall declare interest in making a submission by May 
13th, 2023 and submit their results by September 5th, 2023. For a detailed timeline see Section 2. 
Descriptions of proposals shall be registered as input documents to the proposal evaluation meeting 
in October 2023. Proponents are required to attend that meeting to present their proposals. 
The remainder of this document is organized as follows. Section 2 provides a detailed timeline of 
the CfP. Section 3 defines various terms used in this document. Section 4 describes the test dataset. 
Section 5 specifies the lossless and lossy test conditions considered in this CfP and describes the 
anchor generation process. The evaluation methodology, requirements, and submission rules are 
described in Sections 6, Section 7, and Section 8, respectively. Intellectual Property Rights (IPR) 
considerations and contact information are provided in Section 9 and Section 10, respectively. 
Detailed information about the dataset, scripts, and tools required for this CfP are described in the 
Annexes. 

2 CfP timeline 
The timeline for this CfP is described in Table 1. 

Date Action By Remarks 

Mar. 15th, 2023  Release of the CfP VVM WG  

Jun. 13th, 2023,  Declaration of intention 
of answering the CfP Proponent 

Registration to be made by email 
to the contact addresses listed in 
Section 10. 

Jun. 16th, 2023  
Proponents are provided 

with an individual 
account 

VVM test 
coordinators 

This account will serve to submit 
test material and as a registration 
confirmation. 

Oct. 31st, 2023  Submission package to 
be uploaded Proponent See Section 8 for details. 
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Nov. 7th, 2023  
Verification of MD5 

checksums of decoded 
content 

VVM test 
coordinator  

Nov. 10th, 2023  

Generation and sharing 
of the rendered PNG 

content for all proposals 
based on the selected 

camera paths 

VVM test 
coordinators 

The rendered PNG files for each 
proposal will only be shared 
with their corresponding 
proponent. 

Nov. 13th, 2023  Validation of the 
rendered PNG content Proponent Confirmation to be sent by email 

to the VVM test coordinators. 

Nov. 13th, 2023  Proposal documentation 
submission Proponent 

To be uploaded to the proponent 
account (see Section 8) and 
submitted as an input 
contribution to the VVM 
October meeting. 

Nov. 13th, 2023  
Compilation of submitted 

objective results in a 
unique spreadsheet 

VVM test 
coordinators 

To be uploaded as an input 
contribution. 

Nov. 13th- 25th, 2023  Subjective evaluation 
with naïve viewers Universities  

Nov. 13th- 25th, 2023 Cross-check of objective 
results 

VVM test 
coordinators  

Nov. 28th- 30th, 2023 
(VVM face-to-face 

meeting) 

Detailed technical 
presentation of proposals Proponent  

Nov. 28th- 30th, 2023 
(VVM face-to-face 

meeting) 

Presentation of  
subjective results Universities  

Nov. 28th- 30th, 2023 
(VVM face-to-face 

meeting) 

Selection of  
best proposal(s) VVM WG 

Selection of best proposal(s)  
(see Section 6). Selecting a 
single proposal is the ideal case. 
If no agreement can be achieved 
on the selection of the best 
proposal, the following options 
are possible: (1) combination of 
best proposals, (2) selection of a 
subset of proposals. The 
corresponding technical steps 
will be addressed in subsequent 
meetings. 

Jan. 12th, 2024  Submission of encoder 
and decoder source code 

Proponent(s) Source code shall allow to 
reproduce test results in a bit 
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of the selected 
proposal(s) 

exact manner on the platform on 
which the proposal was 
submitted, and source code shall 
match with the submitted 
documentation. 

Jan. 26th, 2024 

Establishment of the first 
version of the VVM test 

model based on the 
selected proposal(s). 

VVM WG  

Table 1: CfP timeline (Note: Anywhere on Earth time zone is used for all the deadlines). 

3 Definitions 
Attribute maps. Attribute maps are attributes of the static polygonal mesh surface stored as 2D 
images, such as colour texture images.  
Connectivity information. The connectivity information of a polygonal mesh is specified by a 
vector of integers indicating for each face the number of its vertices, and by a vector of indices 
describing how to connect the mesh vertices to create faces. 
 
Corner attributes. Corner attributes are specified by a set of binary, scalar, or vector values 
associated with the mesh face corners, together with a set of indices indicating the mapping 
between corners and corner attribute values. The corner attribute values have finite precision and 
range. 
 
Edge attributes. Edge attributes specify different sets of indices indicating the mapping between 
edges and edge attribute values. They are specified by binary, scalar, or vector values associated 
with the mesh edges. The edge attribute values have finite precision and range.  
 
Face attributes. Face attributes are specified by binary, scalar, or vector values associated with 
the mesh faces. The face attribute values have finite precision and range. 
 
Geometry information. The geometry information is specified by a vector of positions in the 3D 
space, associated with the mesh vertices. The position of each vertex is described by three 
Cartesian coordinates (X, Y, Z) exhibiting finite precision and range. 
 
Lossless connectivity compression. The connectivity information is losslessly compressed if and 
only if the reconstructed connectivity and the attribute indices are the same as those of the input 
mesh, up to a permutation of the vertices and a circular permutation of the indices within faces. 
 
Lossless corner attribute compression. The corner attributes are losslessly compressed if and 
only if the reconstructed corner attribute values and indices are the same as those of the input mesh, 
up to a permutation of the vertices and a circular permutation of the indices within faces. 
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Lossless geometry compression. The geometry information is losslessly compressed if and only 
if the reconstructed vertex positions are the same as those of the input mesh, up to a permutation 
of the vertices. 
 
Lossless mesh compression. A mesh is losslessly compressed if and only if its connectivity, 
geometry, and attributes are all compressed in a lossless manner. 
 
Lossless vertex attribute compression. The vertex attributes are losslessly compressed if and 
only if the reconstructed vertex attributes are the same as those of the input mesh, up to a 
permutation of the vertices. 
 
Lossy mesh compression. A mesh is compressed in a lossy manner if its connectivity, geometry, 
and/or attributes are not losslessly compressed.  
 
Mapping information. The mapping information indicates a mapping between the surface of a 
mesh and a 2D region of the plane.  
 
Mesh quality scalability. A compressed mesh bitstream supports quality scalability if it is 
structured such that decoding a portion of the bitstream results in a mesh of a certain geometry 
and/or attribute information precision (quality), which can be progressively refined by further 
decoding the bitstream. Attribute maps shall not be considered when assessing mesh quality 
scalability. 
 
Mesh spatial scalability. A compressed mesh bitstream supports spatial scalability if it is 
structured such that decoding a portion of the bitstream results in a mesh of a certain resolution 
(i.e. number of faces or vertices), which can be progressively refined by further decoding the 
bitstream. Attribute maps shall not be considered when assessing mesh spatial scalability. 
 
Static polygonal mesh. A static polygonal mesh is a surface representation that consists of 
different components: connectivity information, geometry information, zero or more attribute 
maps, and zero or more vertex, face, corner, and/or edge attributes. 
 
Vertex attributes. Vertex attributes are specified by binary, scalar, or vector values associated 
with the mesh vertices. The vertex attribute values have finite precision and range. 

4 Test material  

4.1 Description of the source content 
The test material to be used for the CfP is organized in six classes, some of which are further 
divided into sub-classes. The six classes are as follows: 

• Class A includes video game meshes obtained by Digital Content Creation (DCC) tools. It 
is divided into two sub-classes: A1 for game assets and A2 for game characters.  

• Class B is a collection of avatars captured as 3D scans of humans. 
• Class C consists of meshes obtained by DCC tools and are suitable for online commerce 

applications. 
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• Class D consists of several professional 3D scans suitable for digital museum and cultural 
heritage applications. It is divided into two sub-classes: D1 for meshes composed of mainly 
triangular faces and D2 for meshes composed of mainly quadrilateral faces.  

• Class E contains non-professional 3D scans of objects. 
• Class F contains professional 3D scans from outdoor and indoor scenes suitable for virtual 

tour applications. 
The list of test material and details on each mesh, including its type, generation process, vertex 
count, face count, and texture resolution, are provided in Annex A. 

From this source dataset, the following three input categories are derived: 

• Unconstrained input category C0, 
• Constrained input category C1, and 
• Single-connectivity input category C2. 

C0, C1, and C2 will be used to evaluate the lossless and the lossy mesh compression technologies 
submitted as responses to this CfP (see Section 8 for details). The pre-processing schemes used to 
generate the input categories C0, C1, and C2 are described in Subsections 4.2, 4.3, and 4.4, 
respectively. The three input categories can be re-generated from the source content by using the 
scripts described in Annex B. A pre-generated version is available at: 

s3://aom-vvm-datasets/spmc-cfp/input_categories 

4.2 Unconstrained input category C0  
The input category C0 corresponds to unconstrained input meshes, which are generated according 
to the pre-processing pipeline described in Figure 1.  

 

Figure 1: Generation process for the unconstrained input category C0. 

The C0 generation process consists of the following pre-processing modules: 

• “Group Merging”, which merges all the mesh groups into a single mesh group. 
• “Uniform Quantization”, which applies uniform quantization to the mesh positions, texture 

coordinates, and normal vectors. 
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• “Image Downscaling”. The texture map is optionally downscaled, while preserving the 
aspect ratio of the image, to guarantee that both horizontal and vertical dimensions do not 
exceed 4096 pixels.  

Both the “Group Merging” and the “Uniform Quantization” processes are performed with the tool 
“mesh_quantize” (see Annex C). Five quantization levels L1, L2, L3, L4, and L5 are generated 
according to the quantization parameters reported in Table 2. The parameters qp, qt, and qn 
correspond to the bit depth that is used to quantize positions, texture coordinates, and normal 
vectors, respectively. 

Quantization Level Set of parameters qp qt qn 

L1 Lowest 9 8 6 

L2 Lower 10 9 7 

L3 Default 11 10 8 

L4 High 13 12 9 

L5 Highest 16 14 10 

Table 2: Quantization parameters. 

The “Image Downscaling” process is performed using the scripts described in Annex D. The 
resolutions of the original and the downscaled texture maps are reported in Annex A. 
Note: Only uniform quantization is considered in this CfP. Alternative quantization techniques 
(e.g. octahedral normal quantization [7]) will be studied during the standard development phase. 

4.3 Constrained input category C1  
The input category C1 corresponds to constrained input meshes that were obtained by further 
processing C0 meshes (see Figure 2) so they conform to the following constraints: 

1. The correspondence between position and non-position attribute indices should be a one-
to-many mapping. That is, any non-position attribute index cannot be shared by different 
spatial vertices defined by position indices. 

2. The connectivity for all attributes, defined by their associated indices, must be a 2-
manifold. 

3. The mesh has no degenerate faces. 
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Figure 2: Generation process for the constrained input category C1. 

The “Constrained Mesh Generation” pre-processing module converts non-manifold meshes into 
manifold ones by duplicating vertices and edges. Degenerate faces are removed. A one-to-many 
mapping between position and non-position attribute indices is enforced by duplicating attribute 
values. Attribute maps are left unchanged. 

4.4 Single connectivity input category C2  
The input category C2 corresponds to single connectivity triangular input meshes, which could be 
directly consumed for rendering purposes, without the need to apply any post-processing 
procedures. C2 meshes are generated by further processing C1 meshes according to the pre-
processing pipeline described in Figure 3. 
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Figure 3: Generation process for the single connectivity input category C2. 

The following pre-processing modules are applied: 

• “Triangulation”: triangulates polygonal faces to convert them to triangular ones. 
• “Index unification”: duplicates attribute values and generates a single set of indices shared 

by all attributes. 

5 Test conditions and anchor generation 
This CfP evaluates mesh compression technologies under two separate test conditions, lossless 
and lossy. 

5.1 Lossless test condition 
A formal definition of lossless mesh compression is provided in Section 3. It guarantees an exact 
reconstruction of the connectivity, the geometry, and the attribute information modulo a 
permutation of the mesh vertices, attributes, indices, and faces. Compression technologies 
evaluated under the lossless mesh compression test condition shall meet the requirements detailed 
in Section 7. The evaluation shall be performed according to the methodology described in 
Section 6.1. 

5.2 Lossy test condition 
Under the lossy test condition, proposals are allowed to modify the mesh connectivity, geometry, 
or attributes to achieve better rate distortion performances. Allowed pre-processing operations 
include and are not limited to: 

• mesh re-parameterization, 
• mesh decimation, and 
• texture map re-sampling and downscaling. 

Under this condition, the following mesh components are not encoded: 

• normal vectors, and  
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• mapping information for non-textured meshes. 
Compression technologies evaluated under the lossy test condition shall meet the requirements 
detailed in Section 7. Objective and subjective evaluation shall be performed according to the 
methodologies described in Section 6.2 and Section 6.3, respectively. 

5.3 Lossless anchor generation  
Anchors for input categories C1 and C2 were generated by using the modified version of the Draco 
compression library described in Annex F. For input Category C0, the ZLib-based mesh 
compression scheme was used to generate the lossless anchors. Annex F provides detailed 
information about the anchor bitstreams generation process. 
The compressed anchor bitstreams and decoded meshes for the three test categories and for all 
quantization settings are available at:  

s3://aom-vvm-datasets/spmc-cfp/lossless_anchor  
Results of the lossless anchor are available in the Excel spreadsheet 
lossless_reporting_template.xlsm provided with this CfP.  

5.4 Lossy anchor generation 
The lossy anchor generation framework is depicted in Figure 4. The lossy anchor bitstreams are 
generated by processing the C0-L5 input category meshes (see Section 6). The lossy anchor 
generation includes steps of decimation, Draco encoding and decoding, and rendering of the 
content using the decoded object, decoded texture, and a camera path. Additional modules, such 
as mesh dequantization and triangulation, are applied to guarantee an input that satisfies the 
requirements of the mesh decimation module. The texture is further downscaled and compressed 
as described in Annex I. Annex H provides detailed information about the anchor generation 
process. The list of tools, versions, download locations, and examples of command lines are 
provided in Annex I. The encoding parameters for the lossy anchor were selected according to the 
process described in Annex L.  



 11 

 

 Figure 4: Lossy anchor framework.  

6 Evaluation methodology 
The lossless mesh compression technologies will be assessed solely based on the objective 
evaluation process described in Section 6.1. The lossy mesh compression technologies will be 
assessed based on both objective (see Section 6.2) and subjective criteria (see Section 6.3).  

6.1 Objective evaluation for lossless condition  
Figure 5 shows the evaluation process for the lossless mesh compression test condition. 
The compressed bitstream shall be obtained by feeding the input mesh to the “Encoder” module. 
Besides generating the compressed bitstream, the encoder is required to generate position and 
attribute reordering information, which specifies for each position and attribute value the index of 
the corresponding attribute value in the input mesh. The reordering information shall conform to 
the JSON scheme described in Annex G. The decoded mesh shall be obtained by feeding the 
compressed bitstream to the “Decoder” module. The “Encoder” and “Decoder” modules are 
required to report the following statistics for each attribute separately: 

• Compressed bitstream size, and 
• Encoding and decoding time excluding any I/O operations (see Annex M). 

The reported statistics should include both attribute values and attribute indices. 
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Figure 5: Evaluation process for the lossless mesh compression test condition, where Cx 
corresponds to C0, C1, or C2 and Ly corresponds to L1, L2, L3, L4, or L5. 

The input mesh, the reordering information, and the decoded mesh are then fed to the “Lossless 
Encoding Check” module (see Annex G), which validates whether the mesh was losslessly 
encoded or not. Pre and post-processing of the input and output meshes are not allowed. For 
instance, the following operations are not allowed:  

• welding vertices on the encoder side and applying vertex unification on the decoder side,  
• converting non-manifold meshes to manifold meshes for test category C0, and 
• generating new indices to guarantee 1-to-n mapping between attribute and position indices. 

6.2 Objective evaluation for lossy condition 
Model-based objective metrics are applied to compare the decoded mesh object and its associated 
decoded texture with the original C0-L5 content. Both the geometry and the texture qualities will 
be evaluated. 
The evaluation will be made according to a set of performance indicators (see Annex K), split into 
two categories: 

• Primary performance indicators, which are considered for decision making. 
• Additional performance indicators, which are considered for in-depth understanding of 

performance.  
The results will be reported in terms of BD-Rate gains [8][9], where the distortion will be 
computed with different quality metrics and the rate will depend on the considered metric. In 
addition, RD curves will be plotted. The rates will be reported as bits per frame.  
The list of primary performance indicators includes: 

• BD-Rate of d2PSNR: the geometry distortion is computed by the model-based point-to-
plane metric [10], and the rate includes the size of the compressed positions. It is computed 
for all meshes. 

• BD-Rate of lumaPSNR: the colour distortion is computed by the model-based luma PSNR 
metric of the texture map and the rate includes the size of the compressed positions, texture 
coordinates, and texture map. It is computed for all textured meshes. 

The list of additional performance indicators includes: 

• BD-Rate of d1PSNR: the geometry distortion is computed by the model-based point-to-
point metric [10] and the rate includes the size of the compressed positions. It is computed 
for all meshes. 
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• BD-Rate of cbPSNR: the colour distortion is computed by the model-based chroma 
cbPSNR metric of the texture map and the rate includes the size of the compressed 
positions, texture coordinates, and texture map. It is computed for all textured meshes. 

• BD-Rate of crPSNR: the colour distortion is computed by the model-based chroma 
crPSNR metric of the texture map and the rate includes the size of the compressed 
positions, texture coordinates, and texture map. It is computed for all textured meshes. 

• Triangle count ratio, representing the ratio between the number of triangles of the input 
mesh (i.e. C0-L5 mesh) and the one generated by decoding the proposed compressed 
bitstream. The number of triangles should be computed as described in Annex M. It is 
computed for all meshes. 

• Geometry encoder runtime ratio, representing the encoder runtime (excluding any IO 
operations) ratio between the anchor and the proposal for the geometry. It is computed for 
all meshes. 

• Texture encoder runtime ratio, representing the encoder runtime (excluding any IO 
operations) ratio between the anchor and the proposal for the texture. It is computed for all 
textured meshes. 

• Geometry decoder runtime ratio, representing the decoder runtime (excluding any IO 
operations) ratio between the anchor and the proposal for the geometry. It is computed for 
all meshes. 

• Texture decoder runtime ratio, representing the decoder runtime (excluding any IO 
operations) ratio between the anchor and the proposal for the texture. It is computed for all 
textured meshes. 

The renderer runtime ratio is an optional performance indicator representing the renderer runtime 
ratio between the anchor and the proposal. It will exclude the IO operations, as reflected in the 
renderer script (see vvmRenderer.py described in Annex J). It is computed for all meshes 
belonging to the viewing set (see Section 6.3.1), based on the camera path implemented in the 
renderer script. 
More details on the computation of the different performance indicators are given in Annex K. 

6.3 Subjective evaluation  
The subjective evaluation will be the primary attribute for the decision-making process for the 
lossy scenario for meshes belonging to the viewing set (a subset of the VVM dataset). For all other 
meshes, the objective criteria (see Section 6.2) will be used. 
The overall process, information on test laboratories and test coordinators, and the reporting of the 
subjective tests is presented in this section. More details are provided in [14], on the laboratories 
setup, on how the results of the two laboratories will be merged, and on the level of content overlap 
in the tests. 

6.3.1 Content 
The subjective evaluation will be performed on the viewing set. The selected content is provided 
in Table 3. Meshes belonging to the viewing set were selected to ensure most of the classes are 
represented, while exhibiting various mesh intrinsic characteristics (e.g. type of polygonal faces 
and vertex count). In addition, the selected content has visual characteristics that are appropriate 
for subjective evaluation. 
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Class Id Name 

A2 9 grey_knight 

11 mira_w_gun 

B 13 frederic_fr00001 

16 nathalie_fr00036 

D1 25 apollo_11 

26 apothecary_vase 

27 orbiter_space_shutter 

30 zakopane_chair 

32 hussar_on_horseback 

D2 40 buste_cuirasse_de_marc_aurele_age 

E 43 dead_rose_smallCCremoved 

46 luna_lionfish  

F 51 police_station 
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Table 3: Viewing set (mesh, and class). 

The subjective evaluation will be performed on four target qualities denoted as TQ1, TQ2, TQ3 
and TQ4 (from highest to lowest quality). 

6.3.2  Rendering 
The videos will be rendered from the bitstreams submitted as a response to the CfP. The renderer 
described in Annex J will be used with the following characteristics: 

• Uniform gray (128, 128, 128) background, with uniform dark gray floor (64, 64, 64). 
• Resolution of 1080p at 60 fps, yuv 420 10 bits format (see Annex I). 

The camera paths will be selected by the Universities and will not be known by the proponents 
before the bitstream submission deadline, to avoid any kind of optimization. 

The generated camera paths will meet the following rules: 

• The duration of the rendered video will be between 10 seconds and 20 seconds. 
• The camera path can include any kind of rotation. 
• The camera path can include any kind of translation. 
• The camera path can start from any viewpoint in the 3D space. 
• The motion speed (rotations and translations) is maintained low to guarantee a comfortable 

viewing experience and reliable scoring.  
• The rendered video can include breaks (no motion). 

6.3.3 Subjective tests 
The subjective tests will be conducted in laboratory with naïve viewers, following the ACR-HR 
methodology with the 11-grade scale [11]. At least 20 valid scores (obtained after outlier removal) 
will be used to compute the Mean Opinion Score (MOS).  
The rendered PNG files, corresponding to the camera path generated by the Universities, will be 
released to the proponent (after the bitstreams submission deadline, and before starting the viewing 
test), for cross-check by the proponent, to ensure the correctness of the rendered content. The 
Python script used to generate the paths, modified from the Python script vvmRenderer.py 
described in Annex L, will be released to the proponents. 

6.3.4 Test laboratories 
The subjective evaluation of the submitted proposals will be carried out by two test laboratories 
from following universities:  

• Kingston University, Prof. Maria Martini (m.martini@kingston.ac.uk) 
• Waterloo University, Prof. Zhou Wang (zhou.wang@uwaterloo.ca) 

6.3.5 Reporting of the subjective results 
The reporting of the subjective tests will be uploaded as an input contribution to the VVM face-
to-face October meeting. It shall include at least: 
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• Graphs representing the MOS versus bitrate curves for each mesh of the viewing set, 
comparing the anchor and the proposal. 

• BD-Rate using the MOS for each mesh of the viewing set, comparing the anchor and the 
proposal. 

• A CSV or Excel file containing the MOS and confidence intervals for each mesh of the 
viewing set. 

• A CSV or Excel file containing the raw scores of each viewer for each mesh of the viewing 
set. 

• Detailed explanation on how the outlier’s removal has been performed. 
• Detailed explanation on how the data were aligned and merged between the two 

laboratories. 

7 Requirements 
Submissions to this CfP shall meet the mandatory requirements (see Section 7.1) and are strongly 
encouraged to also meet the optional requirements described in Section 7.2. 

7.1 Mandatory requirements 
Submitted technologies shall comply with the following mandatory requirements: 

• Deliver efficient lossless compression or lossy compression of static polygonal meshes 
according to the definitions provided in Section 3. 

• Support attributes associated with the mesh vertices and corners. 
• Support integer input and output values for relevant attributes. 

7.2 Optional requirements 
Submitted technologies are encouraged to comply with the following optional requirements: 

• Support meshes with non-manifold geometry and degenerate faces. 
• Support attributes associated with the mesh faces and edges. 
• Support spatial and quality scalability. 
• Support error resilience to cope with non-reliable transmission and storage. 
• Support parallel encoding and decoding. 
• Support efficient hardware and software implementations. 
• Support tools that enable encoding and decoding with low complexity and low latency. 
• Minimize the number of rendering draw calls. 

Low-level programming optimizations, such as assembly code and intrinsic and external 
compression libraries, are discouraged. If any such optimization is implemented, then the rationale 
for, and extent of the optimization shall be described. 

8 Submission rules 
This section describes the set of mandatory rules that responses to this CfP shall follow. The rules 
are organized into four categories: general, lossless mesh compression, lossy compression, and 
package submission rules. 
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8.1 General submission rules 
The submitted proposals are required to: 

• Store decoded meshes in the OBJ format with integer values for all attributes. 
• Avoid training large entropy coding tables, VQ codebooks, etc. If any processes in the 

encoder or decoder are designed using training data, then the coding test set shall not be 
used as part of the training set. 

• Report both the total and per attribute compressed bitstream size (in bits) and the number 
of vertices. 

• Report encoding and decoding logs as described in Annex M. 

8.2 Submission rules for lossless mesh compression 
For the lossless compression test condition, the submitted proposals are required to: 

• Support meshes in at least one of the C0, C1, and C2 input categories. 
• Support all quantization levels (i.e. L1, L2, L3, L4, and L5) associated with all of the 

supported input categories. 
• Support compression of mesh geometry and attributes, including positions, texture 

coordinates, and normal vectors. 
• Pass the lossless encoding check described in Section 6.1. 

8.3 Submission rules for lossy mesh compression 
For the lossy compression test condition, the submitted proposals are required to: 

• Support all meshes in input category C0 with quantization level L5. 
• Support compression of mesh geometry, texture coordinates, and texture maps. 
• Use the HDRConvert tool and the configuration files described in Annex D when upscaling 

or downscaling texture maps. 
• Perform colour space conversion of texture maps from RGB to YUV 420 BT.709 prior to 

AV1 compression by using the HDRConvert tool and the configuration files described in 
Annex I.  

• Leverage the AV1 encoder and decoder implementation and encoding configuration 
settings described in Annex I. Proponents are allowed to change only the quantization level 
(i.e. cq-level parameter) and the input texture intrinsic parameters (e.g. resolution, bit 
depth). 

• Perform colour space conversion of the decoded texture maps from YUV 420 BT.709 to 
RGB by using the HDRConvert tool and the configuration files described in Annex I. The 
decoded texture maps shall be stored in the PNG format (i.e. same format as C0-L5).  

• Use the same renderer as the one used by the anchor, as described in Annex J. 
• Meet the objective quality targets with an allowed variance of +/- 2 dB d2PSNR for objects 

without texture and +/- 1 dB lumaPSNR for objects with texture with respect to the anchor. 
The target qualities are listed in Annex L. 

• Exclude the size of the mapping information from the BD-Rate calculation for non-textured 
objects. 
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8.4 Package submission rules  
Proponents shall deliver their submissions according to the following folder structure: 

• “app”: containing the binary decoder executable (i.e. Windows, MacOS, or Linux 
executable), the configuration files, if required, and the usage documentation allowing for 
decoding the bitstreams. 

• “doc”: containing the documents specified in Section 8.4.1. 
• “src”: place holder for the potential delivery of source code (see Section 8.4.2). 
• “enc”: containing encoding related files for the lossless and/or the lossy test conditions 

described in Section 8.4.3 and Section 8.4.4, respectively. 
• “scripts”: containing a bash script “decode.sh” (without parameters) needed for decoding 

the compressed bitstreams and for generating all the decoding related files 
(see Section 8.4.3 and Section 8.4.4). 

• “dec”: all decoding related files for the lossless and/or the lossy test conditions described 
in Section 8.4.3 and Section 8.4.4, respectively.  

• “stats”: containing the proposals statistics as described in Section 8.4.5. 

8.4.1 Technical description 
Proponents shall provide full technical descriptions of their proposals. The technical descriptions 
should provide sufficient information for understanding and implementing the proposed 
technologies. The descriptions shall include all data processing paths and individual data 
processing components used to generate the bitstreams. The technical descriptions shall contain 
information suitable to assess the complexity of the implementation of the technology and how it 
addresses the requirements reported in Section 7. 

8.4.2 Source code 
Proponents are advised that, upon acceptance for further evaluation, it will be required that certain 
parts of any proposed technology be made available in source code format to participants in the 
core experiments process and for potential inclusion in the prospective standard as reference 
software. When a particular technology is a candidate for further evaluation, commitment to 
provide such software is a condition of participation. The software shall produce identical results 
to those submitted to the test on the same platform that the technology was submitted. Additionally, 
submission of improvements (e.g. bug fixes) is strongly encouraged. 

8.4.3 Folder structure and naming conventions for the lossless test condition 
Under the lossless test condition, the “enc” and “dec” folders shall follow the following folder 
structure: 

• enc 
o P{pn}T0C{x}L{y}: folder for input category C{x}L{y} 

§ {m-id}_{m-name} 
• license.txt/pdf: license for mesh M{m-id}, 
• P{pn}T0C{x}L{y}M{m-id}.bin: compressed bitstream, 
• P{pn}T0C{x}L{y}M{m-id}_reorder.json: reordering information 

file (see Annex G),  
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• P{pn}T0C{x}L{y}M{m-id}_enc.json: encoding log file (see 
Annex M). 

• dec 
o P{pn}T0C{x}L{y}: folder for input category C{x}L{y} 

§ {m-id}_{m-name} 
• license.txt/pdf : license for mesh M{m-id}, 
• P{pn}T0C{x}L{y}M{m-id}_cmp.json: mesh comparison log file 

(see Annex G), 
• P{pn}T0C{x}L{y}M{m-id}_dec.json: decoding log file (see 

Annex M),  
• P{pn}T0C{x}L{y}M{m-id}.obj: decoded obj file 

With: 

• pn: proponent number assigned by the VVM test coordinators. 
• x: input category index (0, 1, 2) 
• y: quantization level index (1, 2, 3, 4, 5) 
• m-id: mesh Id as specified in Annex A. 
• m-name: mesh name as in Annex A. 

Figure 6 shows an example of folder structure for the encoding and decoding related files. 

 

Figure 6: Folder structure and naming conventions for the lossless test condition. 

8.4.4 Folder structure and naming conventions for the lossy test condition 
Under the lossy test condition, the “enc” and “dec” folders shall follow the following folder 
structure: 

• enc 
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o P{pn}T1 
§ {m-id}_{m-name} 

• license.txt/pdf : license for mesh M{m-id}, 
• P{pn}T1Q{q}M{m-id}_mesh.bin: compressed mesh bitstream for 

quality target q, 
• P{pn}T1Q{q}M{m-id}_texture.bin: compressed texture bitstream 

for quality target q, 
• P{pn}T1Q{q}M{m_id}.mtl: the material file, 
• P{pn}T1Q{q}M{m_id}_enc.json: encoding log file. 

• dec 
o P{pn}T1 

§ {m-id}_{m-name} 
• license.txt/pdf : license for mesh M{m-id}, 
• P{pn}T1Q{q}M{m-id}_dec.obj: decoded mesh obj file for quality 

target q, 
• P{pn}T1Q{q}M{m-id}_dec.png: decoded texture in PNG format 

for quality target q, 
• P{pn}T1Q{q}M{m-id}_dec.mtl: material file used in the decoded 

mesh,  
• P{pn}T1Q{q}M{m-id}_dec.json: decoding log file. 

With: 

• pn: proponent number assigned by the VVM test coordinators.  
• q: quality target index (TQ1, TQ2, TQ3, TQ4) as specified in Annex L.  
• m-id: mesh Id as specified in Annex A. 
• m-name: mesh name as in Annex A. 

Figure 7 shows an example of folder structure for the encoding and decoding related files. 
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Figure 7: Folder structure and naming conventions for the lossy test condition. 

8.4.5 Encoding and decoding statistics 
Results of the objective tests shall be reported by using the reporting templates provided as part of 
this CfP. Proponents shall use the Excel spreadsheets lossless_reporting_template.xlsm, and 
lossy_reporting_template.xlsm for the lossless and lossy test conditions, respectively. The 
spreadsheets shall be the reference for information to be reported. 
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9 Subsequent provision of source code and IPR considerations 
Participants in Alliance for Open Media Working Groups have adopted the Alliance for Open 
Media Patent License 1.0. This is intended to fulfill their commitments to make available their 
Essential Claims, as defined in the W3C Patent Policy, in Final Deliverables adopted by that 
Working Group under the W3C RF licensing requirements as if that Final Deliverable was a W3C 
Recommendation. 
Software released by the Alliance for Open Media is made available under a combination of the 
following licenses: BSD 3-Clause Clear License and Alliance for Open Media Patent License 1.0. 
Additional legal and software information can be found here: License | Alliance for Open Media 
(aomedia.org). 

10 Contacts 
VVM chairs: 

• Shan Liu, Tencent (wg-vvm-chair@aomedia.org) 
• Khaled Mammou, Apple (wg-vvm-chair@aomedia.org) 
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Annex A: Detailed test content description 
Table 4 reports the following information for each mesh: 

• “Class”: the mesh class. 
• “Id”: the mesh index. 
• “Name”: the name of the mesh. 
• "Type”: the kind of polygons that are present in the mesh. 
• “Creation process”: the way the mesh has been produced (i.e. “DCC” for content obtained 

from DCC tools, and “3D Scan” for 3D human scans.  
• “Face count”: the number of faces of the mesh. 
• “Source texture resolution”: the resolution of the source texture of the mesh, in pixels. 
• “C0 texture resolution”: the resolution of the C0 texture of the mesh, in pixels. 

 

Class 
Id 

(m-id) 

Name 
(m-name) 

Type Creation 
process 

Face 
count 

Source texture 
resolution 

C0 texture 
resolution 

A1 

1 gramophone Quad DCC 87384 - - 

2 toy_bitplane Quad DCC 26496 - - 

3 toy_car Quad DCC 29730 - - 

4 toy_drummer Quad DCC 23370 - - 

5 toy_robot_vintage Quad DCC 42212 - - 

6 tv_retro Quad DCC 36640 - - 

A2 

7 creature_box_squid Tri DCC 20140 4096×4096 4096×4096 

8 cyber_samurai Tri-Quad DCC 208944 12288×8192 4096×2730 

9 grey_knight Poly DCC 35771 4096×4096 4096×4096 

10 just_a_girl Tri DCC 77725 4096×3072 4096×3072 
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11 mira_w_gun Tri DCC 77178 4096×6144 2730×4096 

12 winter_girl Poly DCC 92637 14338×12288 4096×3510 

B 

13 frederic_fr00001 Tri 3D Scan 49908 4096×4096 4096×4096 

14 levi_fr00000 Tri 3D Scan 40040 4096×4096 4096×4096 

15 mitch_fr00001 Tri 3D Scan 30000 4096×4096 4096×4096 

16 nathalie_fr00036 Tri 3D Scan 30000 4096×4096 4096×4096 

17 rafa_fr00001 Tri 3D Scan 40000 4096×4096 4096×4096 

18 thomas_fr00170 Tri 3D Scan 30000 4096×4096 4096×4096 

C 

19 chair_swan Quad DCC 24708 - - 

20 cup_saucer_set Quad DCC 21396 - - 

21 flower_tulip Quad DCC 62224 - - 

22 motorcycle Tri-Quad DCC 30000 2048×3072 2048×3072 

23 teapot Quad DCC 103696 - - 

24 wateringcan Quad DCC 36032 - - 

D1 

25 apollo_11 Tri 3D Scan 721399 12288×8192 4096×2730 

26 apothecary_vase Tri 3D Scan 60002 8192×8192 4096×4096 

27 orbiter_space_shutter Tri 3D Scan 150000 4096×4096 4096×4096 
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28 piggy_bank Tri 3D Scan 127393 8192×8192 4096×4096 

29 ware_bowl Tri 3D Scan 64000 4096×4096 4096×4096 

30 zakopane_chair Tri 3D Scan 141569 4096×4096 4096×4096 

31 heliostat Tri-Quad 3D Scan 325374 8192×8192 4096×4096 

32 hussar_on_horseback Tri-Quad 3D Scan 412947 4096×6144 2730×4096 

33 violin Tri-Quad 3D Scan 459874 4096×4096 4096×4096 

34 electrodynamic Poly 3D Scan 255964 8192×16384 2048×4096 

35 marble_mortar Tri-Quad 3D Scan 29654 8192×16384 2048×4096 

D2 

36 butterflies_collection Tri-Quad 3D Scan 445915 12288×8192 4096×2730 

37 armillary_sphere_1771 Tri-Quad  3D Scan 308898 

 

8192×4096 

 

4096×2048 

 

38 wooden_gramophone Tri-Quad 3D Scan 643464 16384×16384 4096×4096 

39 stereoscopic_cam Tri-Quad 3D Scan 318100 8192×8192 4096×4096 

40 buste_cuirasse_de_marc_aure
le_age Quad  3D Scan  489920 2048×2048 2048×2048 

41 candle_stick Quad 3D Scan 271800 4096×4096 4096×4096 

42 promo_ashtray Quad 3D Scan 54344 4096×4096 4096×4096 

E 

43 dead_rose_smallCCremoved Tri 3D Scan 49940 8192×8192 4096×4096 

44 green_tree_frog Tri 3D Scan 1333419 8192×8192 4096×4096 
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45 japanese_spiny_lobster Tri 3D Scan 864576 4096×8912 2048×4096 

46 luna_lionfish Tri 3D Scan 546363 4096×8192 2048×4096 

47 sakura_cherry_blossom Tri 3D Scan 1067755 8192×8192 4096×4096 

48 wiz_boots Tri 3D Scan 300000 4096×8192 2048×4096 

F 

49 cela_ruins_of_a_nuns_cell Poly 3D Scan 709020 8192×8192 4096×4096 

50 heilig_grab_kapelle Tri 3D Scan 555924 8192×8192 4096×4096 

51 police_station Tri 3D Scan 1538567 8192×8192 4096×4096 

52 the_great_drawing_room Tri 3D Scan 999999 8192×8192 4096×4096 

53 the_serving_room Tri 3D Scan 999999 8192×8192 4096×4096 

Table 4: VVM dataset detailed description. 
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Annex B: Generation of the input categories C0, C1, and C2 
The three input categories C0, C1, and C2 can be generated by using the python script 
“generate_input_categories.py” (see Annex I). The script generates meshes for input categories, 
downscales images if necessary, stores all images to one centralized location, and updates material 
files with correct pointers in input categories. 
The input path should point to a local copy of the static meshes stored on S3 bucket under the 
following URI: s3://aom-vvm-datasets/StaticMeshes/. The dataset can be downloaded following 
the instructions from the Content repository at: 

https://gitlab.com/AOMediaVVM/content-conditions/content 
or by running the following commands (if aws CLI tools are already set up): 

aws --profile aom-vvm s3 sync s3://aom-vvm-datasets/StaticMeshes datasets_local 

The binary path should contain the following tools: 

• Mesh Quantization (see Annex C) 
• Draco (see Annex I) 
• Lossless Compression Validation (see Annex G) 
• Image Downscaling (see Annex D) 

The config path should contain the configuration file used for image downscaling, as detailed 
Annex D. 
After running the script, the following folders will appear under the output_path: 

• C0-L1, C0-L2, C0-L3, C0-L4, C0-L5 
• C1-L1, C1-L2, C1-L3, C1-L4, C1-L5 
• C2-L1, C2-L2, C2-L3, C2-L4, C2-L5 
• textures 

Each Cx-Ly folder contains 53 mesh folders, named as m-id_m-name, where indices for meshes 
are detailed in Annex A. Figure 8 shows an example of file structures of an input category. Each 
mesh folder contains: 

• m-name.obj: the input mesh for codecs. 
• m-name.json: the quantization information for inverse-quantization. 
• m-name.mtl: the material file for meshes with textures, it points to the corresponding image 

under the textures folder. 
• license.txt/pdf: license information file. 

The textures folder is the centralized location for all textures, which contains both images that need 
downscaling and those don’t. The folder contains 42 mesh folders, named as m-id_m-name, where 
indices for meshes are detailed in Annex A. Each mesh folder contains: 

• m-name.png: the texture image used by the mesh, either downscaled or not. 
• license.txt/pdf: license information file. 
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Figure 8: Example of file structures of input categories 
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Annex C: Mesh quantization 

Quantization 
The original dataset was quantized by using the mesh quantization tool “mesh-quantize.py” (see 
Annex I). The quantization tool converts the positions, the texture coordinates, and the normals of 
an input mesh to integer values by applying a uniform quantization. More precisely the quantized 
integer attribute values (𝑎!)!	∈	{%,…,()*}  (with 𝐴 being the number of attributes) are obtained by 
processing the floating-point attribute values (𝛼!)!,%…()* as follows: 

𝑎! = '
(𝛼! − 𝛼-!.* × (2/ − 1)
max(𝛼-01 − 𝛼-!.) +

1
22	 , ∀	𝑖	 ∈ 	

{0, … , 𝐴 − 1}, 

where:  

• ⌊𝑥⌋ is the floor function that takes as input a real number 𝑥, and gives as output the greatest 
integer less than or equal to 𝑥, 

• 𝑞 is the bit depth of the quantized values, and 
• 𝛼-01 and 𝛼-!. are the maximum and minimum attribute values, respectively. 

Both input and output meshes are stored in OBJ format. Besides the quantized output mesh, the 
tool dumps also quantization information in JSON format (see Figure 9). 

{ 
    "attributes": [ 
        { 
            "max": [ 
                194.98550415039063, 
                317.681884765625, 
                196.73941040039063 
            ], 
            "min": [ 
                -195.5240936279297, 
                43.57830047607422, 
                -195.44029235839844 
            ], 
            "num_components": 3, 
            "scale": 10.441641807556152, 
            "type": "POSITION", 
            "vector_count": 382273 
        }, 
        { 
            "max": [ 
                0.9998329877853394, 
                0.9995999932289124 
            ], 
            "min": [ 
                0.00016700000560376793, 
                0.0002500000118743628 
            ], 
            "num_components": 2, 
            "scale": 1023.341796875, 
            "type": "TEX_COORD", 
            "vector_count": 483572 
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        }, 
        { 
            "max": [ 
                1.0, 
                1.0, 
                1.0 
            ], 
            "min": [ 
                -1.0, 
                -1.0, 
                -1.0 
            ], 
            "num_components": 3, 
            "scale": 511.5, 
            "type": "NORMAL", 
            "vector_count": 493000 
        } 
    ] 
} 

Figure 9: Example of quantization information. 

Inverse quantization 
The inverse quantization process consists in converting the quantized integer attribute values 
(𝑎!)!	∈	{%,…,()*} to reconstructed floating point attributes (𝛼@!)!,%…()* as follows: 

𝛼@! =
𝑎! ×max(𝛼-01 − 𝛼-!.*

(2/ − 1) + 𝛼-!.	, ∀	𝑖	 ∈ 	 {0, … , 𝐴 − 1}. 

The inverse quantization process requires the quantization information stored in the JSON file 
produced during the quantization process. 
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Annex D: Image downscaling 
The original texture maps can be downscaled by using the Python script “downscale_images.py” 
(see Annex I).  The “downscale_images.py” script leverages the HDRTool (see Annex I). 
There is a total of 53 static meshes, out of which 42 contain textures. Among those meshes with 
textures, 36 of them require image downscaling. After running the script, a total of 36 folders will 
appear under the output path. Each folder is named as m-id_m-name, where indices for meshes are 
detailed in Annex A. Each mesh folder contains: 

• m-name.png: the downscaled image. 
• license.txt/pdf: license information. 
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Annex E: Lossless anchors for input categories C0, C1 and C2 

The zlib-based mesh codec “mesh-zlib-codec” (see Annex I) was used to generate the lossless 
anchor bitstreams for the input category C0. The modified version of the Draco compression 
library (see Annex I) was used for input categories C1 and C2. The following changes to the Draco 
library were introduced to meet the lossless encoding requirements (see Section 7) and rules (see 
Section 8): 

● Disable Draco internal quantization by loading all attributes as integer attributes instead of 
floating-point attributes. 

● Increase the maximum corner count from 8 to 255 to support all the meshes included in the 
VVM evaluation dataset. 

● Disable input values deduplication. 
● Dump attribute reordering information as described in Annex G.  
● Report encoding and decoding statistics (e.g. encoding and decoding time and compressed 

bitstream size) for each attributes separately. 
● Expose the encode option use_single_connectivity to enforce single connectivity output for 

category C2.  
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Annex F: Lossless anchors generation process 
The lossless anchor bitstreams for the three input categories C0, C1, and C2 can be generated by 
using the python script “generate_lossless_anchors.py" (see Annex I).  
After running the script, the following folders will be generated under the output_path: 

• “enc”: same structure described in Section 8.4.3, 
• “dec”: same structure described in Section 8.4.3, and 
• “stats”: performance statistics in csv format. 
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Annex G: Lossless compression validation 
The Mesh Compare tool shall be used to validate whether the codec under evaluation is lossless 
or not. The tool takes as input: 

• A mesh M belonging to one of the input categories Cx-Ly, 
• A JSON file containing the encoding reordering information (see Figure 10), 
• The decoded mesh M’ obtained by decompressing the compressed bitstream associated 

with the input mesh M. 
The codec under evaluation shall produce the encoding reordering information, which specifies 
for each attribute value the index of the corresponding attribute value in the input mesh. The 
reordering information shall be stored as a JSON file compliant with the scheme described in 
Figure 11. The corresponding input and decoded meshes are described in Figure 12 and Figure 13, 
respectively. 
To compare the original mesh original.obj to the decoded mesh decoded.obj, while using the 
reordering information stored in reorder.json, use the following command line: 

./mesh-compare \ 

       --original original.obj \ 

       --decoded decoded.obj \ 

       --reorder reorder.json  \ 

       --log cmp_log.json 

The parameters of the tool are as follows: 

• original: the path of the original mesh in OBJ format [Required] 
• decoded: the path of the decoded mesh in OBJ format [Required] 
• reorder: the path of the reordering info file in JSON format [Required] 
• log: the path of the log file (see Figure 11) [Required] 

{ 

    "attributes_reordering": [ 

        { 

            "count": 8, 

            "data_type": "integer", 

            "indices": [ 

                6, 

                4, 

                3, 

                2, 

                1, 

                7, 

                0, 

                5 
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            ], 

            "num_components": 3, 

            "type": "POSITION" 

        }, 

        { 

            "count": 24, 

            "data_type": "integer", 

            "indices": [ 

                22, 

                23, 

                21, 

                20, 

                11, 

                10, 

                8, 

                9, 

                6, 

                7, 

                5, 

                4, 

                19, 

                18, 

                16, 

                17, 

                14, 

                15, 

                13, 

                12, 

                3, 

                2, 

                0, 

                1 

            ], 

            "num_components": 2, 

            "type": "TEX_COORD" 

        }, 

        { 

            "count": 24, 

            "data_type": "integer", 
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            "indices": [ 

                22, 

                23, 

                21, 

                20, 

                11, 

                10, 

                8, 

                9, 

                6, 

                7, 

                5, 

                4, 

                19, 

                18, 

                16, 

                17, 

                14, 

                15, 

                13, 

                12, 

                3, 

                2, 

                0, 

                1 

            ], 

            "num_components": 3, 

            "type": "NORMAL" 

        } 

} 

Figure 10: Encoding reordering information. 
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{ 

    "decoded_mesh": { 

        "face_count": 60002, 

        "is_single_connectivity": false, 

        "max_face_vertex_count": 3, 

        "min_face_vertex_count": 3, 

        "normal_count": 30666, 

        "position_count": 29993, 

        "shape_count": 1, 

        "tex_coord_count": 31188 

    }, 

    "lossless_coding": true, 

    "original_mesh": { 

        "face_count": 60002, 

        "is_single_connectivity": false, 

        "max_face_vertex_count": 3, 

        "min_face_vertex_count": 3, 

        "normal_count": 30666, 

        "position_count": 29993, 

        "shape_count": 1, 

        "tex_coord_count": 31188 

    }, 

    "parameters": { 

        "decoded": "apothecary_vase_decoded.obj", 

        "log": "apothecary_vase_cmp.json", 

        "original": "apothecary_vase.obj", 

        "reordering_info": "apothecary_vase_reorder.json" 

    } 

} 

Figure 11: Example of comparison log. 
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vn 512 512 1023 

vn 512 512 1023 

vn 512 512 1023 

vn 1023 512 512 

vn 1023 512 512 

vn 1023 512 512 

vn 1023 512 512 

vn 512 1023 512 

vn 512 1023 512 

vn 512 1023 512 

vn 512 1023 512 

f 8/4/4 2/2/2 3/3/3 1/1/1 

f 8/8/8 6/6/6 7/7/7 2/5/5 

f 5/12/12 6/10/10 8/11/11 1/9/9 

f 3/16/16 4/14/14 5/15/15 1/13/13 

f 7/20/20 4/18/18 3/19/19 2/17/17 

f 7/23/23 6/21/21 5/24/24 4/22/22 

Figure 12: Input mesh in OBJ format. 
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v 65535 65535 0 

v 0 65535 65535 

v 65535 65535 65535 

v 65535 0 65535 

v 65535 0 0 

v 0 0 0 

v 0 0 65535 

v 0 65535 0 

vt 0 16383 

vt 16383 0 

vt 16383 16383 

vt 0 0 

vt 16383 0 

vt 0 16383 

vt 0 0 

vt 16383 16383 

vt 16383 16383 

vt 0 0 

vt 16383 0 

vt 0 16383 

vt 16383 16383 

vt 0 0 

vt 16383 0 

vt 0 16383 

vt 16383 0 

vt 0 16383 

vt 0 0 

vt 16383 16383 

vt 0 16383 

vt 16383 0 

vt 16383 16383 

vt 0 0 

vn 512 1023 512 

vn 512 1023 512 

vn 512 1023 512 

vn 512 1023 512 

vn 0 512 512 

vn 0 512 512 

vn 0 512 512 
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vn 0 512 512 

vn 512 512 0 

vn 512 512 0 

vn 512 512 0 

vn 512 512 0 

vn 1023 512 512 

vn 1023 512 512 

vn 1023 512 512 

vn 1023 512 512 

vn 512 512 1023 

vn 512 512 1023 

vn 512 512 1023 

vn 512 512 1023 

vn 512 0 512 

vn 512 0 512 

vn 512 0 512 

vn 512 0 512 

f 8/4/4 2/2/2 3/3/3 1/1/1 

f 8/8/8 6/6/6 7/7/7 2/5/5 

f 5/12/12 6/10/10 8/11/11 1/9/9 

f 3/16/16 4/14/14 5/15/15 1/13/13 

f 7/20/20 4/18/18 3/19/19 2/17/17 

f 7/23/23 6/21/21 5/24/24 4/22/22 

Figure 13: Decoded mesh in OBJ format. 
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Annex H: Lossy anchor generation process 
The full framework is implemented as a Python script that runs sequentially the following 
modules: 

• Decimation: the decimation is performed by MeshLab, using the python pyMeshLab 
library with a decimation ratio (decRatio). To make the C0-L5 mesh compatible with 
MeshLab decimation, C0-L5 is first dequantized and triangulated. The decimation 
algorithm applied is the “Quadric Edge Collapse Decimation (with texture)”, by Garland 
and Heckbert [12]. 

• Draco coding and decoding: Draco is used to encode and decode the decimated mesh. The 
quantization bits for the position attribute (qpDraco), and for texture coordinate attribute 
(qtDraco) are set in a way to control the size of the bitstream file. The quantization bits for 
the normal vector attribute is set to -1 to avoid compression of normal vectors. 

• Texture downsampling: C0-L5 texture is downsampled by a ratio ¾ in each horizontal and 
vertical direction, using HDRConvert. 

• AV1 texture coding and decoding: the downsampled texture is encoded by AV1, using 
libaom, at different compression levels (cq-level). 
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Annex I: List of scripts, tools and parameters 

Tools and parameters for the lossy anchor  
The lossy anchor can be generated by the Python script vvmLossyAnchorGeneration.py and 
related files, that can be found at (tag spmc_cfp_1.0): 

https://gitlab.com/AOMediaVVM/cfp/spmc 
This script runs sequentially the different modules, depicted in Figure 4. Each module can be 
launched independently. The software to be used and the command line or configuration is 
provided below. 

• PyMeshLab: library used for decimating the meshes 

2022.2.post2 https://pymeshlab.readthedocs.io/en/latest/installation.html 
 

• mesh_polygon2triangle: Python code used for triangulation of the meshes 
tag: spmc_cfp_1.0  https://gitlab.com/AOMediaVVM/eval-

tools/MeshProcessingTools 

mesh_polygon2triangle.py \ 
-i {inputFile} \ 
-o {outputFile}  

 
• Draco: software used for encoding and decoding the meshes. 

tag: spmc_cfp_lossy_1.0 https://gitlab.com/AOMediaVVM/eval-tools/draco 

draco_encoder \ 

-i {inputObj} \ 
-o {outputFileBit} \ 
-qp {qp} -qt {qt} -qn -1 -qg 30 -cl 10 

draco_decoder \ 

-i {outputFileBit} \ 
-o {outputFile} 

 
• AOM encoder and decoder: software used to encode and decode the textures 

tag: 3gpp-2021-10-15-5 
https://aomedia.googlesource.com/aom/ 

aomenc \  
--verbose --codec=av1 -v --psnr --obu \ 
--frame-parallel=0 --cpu-used=0 --limit=1 --passes=1 \ 
--end-usage=q --i420 --enable-tpl-model=0 --disable-kf \ 
--enable-keyframe-filtering=0 --fps=1/1 \ 
--input-bit-depth=10 --bit-depth=10 \ 
-w {widthOutput} -h {heightOutput} \ 
--cq-level = {cq-level} \ 
--tile-columns=0 --threads=1 --max-reference-frames=4 \ 
--min-gf-interval=32 --max-gf-interval=32 \ 
--gf-min-pyr-height=5 --gf-max-pyr-height=5 \ 
 --kf-min-dist=1 --kf-max-dist=1 --lag-in-frames=0 \ 
 --min-q= {cq-level} --max-q={cq-level}\ 
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 --disable-warning-prompt --deltaq-mode=0 \ 
 --enable-intrabc=0 --enable-palette=0 \ 
 --target-seq-level-idx=0031 \ 
-o {outputTextureBin} \ 
{inputTexture} 

aomdec \ 

--i420 –verbose \ 
--output= {outputYuv}\ 
" " {outputTextureBin} 

 
• HDRConvert: software used for image down-sampling, image up-sampling, and colour 

space conversion  
tag: v0.24 

https://gitlab.com/standards/HDRTools  
For RGB to YUV BT. 709 with potential image scaling: 

HDRConvert \ 

-f {path/to/pngtoyuv420.cfg} \ 
-p SourceFile={path/to/png/file} \ 
-p OutputWidth={outputWidth} \ 
-p OutputHeight={outputHeight} \ 
-p OutputFile={path/to/yuv/file} 

For YUV BT. 709 to RGB with potential image scaling: 

HDRConvert \ 

-f {path/to/yuv420torgb444.cfg} \ 
-p SourceFile={path/to/yuv/file} \ 
-p SourceWidth={sourceWidth} \ 
-p SourceHeight={sourceHeight} \ 
-p OutputWidth={outputWidth} \ 
-p OutputHeight={outputHeight} \ 
-p OutputFile={path/to/png/file} 

 

• mesh-quality-metric: C++ tool to compute objective quality metrics described in Annex K. 
tag: spmc_cfp_1.0 https://gitlab.com/AOMediaVVM/eval-tools/MeshProcessingTools 

mesh-quality-metric \ 

--mesh1 {referenceObj} --tex1 {referencePng} \  
--mesh2 {decodedObj} --tex2 {decodedPng} \ 
--log {logFileJson} 

Tools and parameters for the lossless anchor 
• mesh-zlib-codec: C++ code to compress and decompress quantized meshes as the lossless 

anchor for C0. 
tag: spmc_cfp_1.0 https://gitlab.com/AOMediaVVM/eval-tools/MeshProcessingTools 

mesh-zlib-codec \ 

--mode 0 \ 
--input {inputObj} \ 
--output {outputFileBin} \ 
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--reorder {outputReorderJson} \ 
--log {encoderLog} 

mesh-zlib-codec \ 

--mode 1 \ 
--input {inputFileBin} \ 
--output {outputObj} \ 
--info {encoderLog} \ 
--log {decoderLog} 

 
• Modified Draco for lossless coding: C++ code to compress and decompress quantized 

meshes as the lossless anchor for C1. 
tag: spmc_cfp_lossless_1.0 https://gitlab.com/AOMediaVVM/eval-tools/draco 

draco_encoder \ 

-i {inputObj} \ 
-o {outputFileBin} \ 
-r {outputReorderJson} \ 
-l {encoderLog} \ 
-cl 10 \ 
-preserve_polygons 1 

draco_decoder \ 

-i {inputFileBin} \ 
-o {outputObj} \ 
-l {decoderLog} 

 
• Modified Draco for lossless coding: C++ code to compress and decompress quantized 

meshes as the lossless anchor for C2. 
tag: spmc_cfp_lossless_1.0 https://gitlab.com/AOMediaVVM/eval-tools/draco 

draco_encoder \ 

-i {inputObj} \ 
-o {outputFileBin} \ 
-r {outputReorderJson} \ 
-l {encoderLog} \ 
-cl 10 \ 
-unify_indices 

draco_decoder \ 

-i {inputFileBin} \ 
-o {outputObj} \ 
-l {decoderLog} 

 
• Lossless compression evaluation tool: C++ code to compare if a mesh is lossless coded. 

tag: spmc_cfp_1.0 https://gitlab.com/AOMediaVVM/eval-tools/MeshProcessingTools 

mesh-compare \ 

--original {originalObj} \ 
--decoded {decodedObj} \ 
--reorder {reorderJson} \ 
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--log {compareLog} 

 
• Lossless anchor generation: 

tag: spmc_cfp_1.0 https://gitlab.com/AOMediaVVM/cfp/spmc 

python3 generate_lossless_anchors.py \ 

--input_path {inputPath} \ 
--output_path {outputPath} \ 
--binary_path {binariesPath} 

 

 

Other tools 
• Generation of input categories: 

tag spmc_cfp_1.0 https://gitlab.com/AOMediaVVM/cfp/spmc 

python3 generate_input_categories.py \ 

               --input_path {inputPath} \ 

               --output_path {outputPath} \ 

               --binary_path {binariesPath} \ 

               --config_path {configPath} 

 

• Quantization: 
tag spmc_cfp_1.0 https://gitlab.com/AOMediaVVM/cfp/spmc 

To quantize the input mesh input.obj with 11-bit precision for positions, 10-bit precision for 
texture coordinates, and 8-bit precision for normal:  

mesh-quantize \ 

          --input {inputObj} \ 

          --output {quantizedObj} \ 

          --qp 11 --qt 10 --qn 8 \ 

          --qinfo {quantizationInfoJson} 

 

To apply inverse quantization to a quantized mesh quantized_output.obj:  

mesh-quantize \ 

          --mode 1 \ 

          --input {quantizedObj} \ 

          --output {reconstructedObj} \ 

          --qinfo {quantizationInfoJson} 
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• Downscaling: 

tag spmc_cfp_1.0 https://gitlab.com/AOMediaVVM/cfp/spmc 
python3 downscale_images.py \ 

         --input_path {inputPath} \ 

         --output_path {outputPath} \ 

          --binary_path {binariesPath} \ 

          --config_path {configPath} 
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 Annex J: Rendering scripts and tools 
The rendering can be generated by the Python script vvmRenderer.py, available at (tag 
spmc_cfp_1.0): 

https://gitlab.com/AOMediaVVM/cfp/spmc  
The renderer is using open3D library to produce still images (PNG files) that are further converted 
to videos for subjective viewing (MP4 files). The software to be used and the command line or 
configuration are provided below. 
This script can be launched independently, or from the lossy anchor generation script 
vvmLossyAnchorGeneration.py. 

• vvmRenderer.py. 
python vvmRenderer.py \ 

--inputObjFile {inputObj} \ 

--outputFolderPng {ouputPathPng}\ 

--outputMp4 {outputMp4} \ 

--initial_rotation_h {initial_rotation_h} \ 

--initial_rotation_v {initial_rotation_v} \ 

--initial_translation_h {initial_translation_h} \ 

--initial_translation_v {initial_translation_v} \ 

--scale {scale} \ 

--rotation_speed {rotation_speed} \ 

--grid_translate {grid_translate} \ 

--inputFloor {inputFloorObj} \ 

--nbFrames {nbFrames }  

 
• Open3D: library used for rendering the meshes. 

0.16.0 https://github.com/isl-org/Open3D/tags 
 

• ffmpeg: library used to convert the list of PNG files produced by the renderer to MP4 
videos. The crf value of 10 has been selected according to the recommendations made in 
[13].  

v5.1.2 
Executable files for Linux, Mac and Windows:  
https://ffmpeg.org/download.html 

ffmpeg \ 

                      -y -r 30 -f concat -safe 0 \ 

                      -i {filesList} \ 

                      -c:v libx265 -crf 10 -tag:v hvc1 -pix_fmt yuv420p {outputFile } 
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Annex K: Performance indicators 

Sampling 
The sampling process takes as input: 

• A mesh M. 
• A 3D bounding box B containing M and used to guide the sampling process.  
• A user-defined parameter G controlling the precision of the sampling process. 
• Optionally a texture map T. 

The output of the sampling process is a point cloud P specified by a set of 3D points, with 3D 
positions, surface normal vectors, and colour information. 

The sampling process proceeds as follows.  

First, the bounding box 𝐵 is uniformly sampled to generate a uniform grid of 3D points of size 
𝐺 × 𝐺 × 𝐺. Then, a subset of these points is projected on the faces of the mesh M to generate the 
output point cloud P as described in the remainder of this section. 

After triangulating the faces of the mesh 𝑀, the generated triangles are processed successively as 
follows. First, the normal to the current triangle is computed and used to choose between one of 
the three main projection planes, 𝑋𝑌, 𝑌𝑍, or 𝑋𝑍. The plane with the normal direction closest to the 
triangle normal vector is selected. Then, the current triangle is projected on the selected plane 
according to the plane normal direction and all grid points located inside the projected triangle are 
added to the point cloud P. The positions of the added points are determined by projecting them 
back on the triangle according to the normal direction of the plane. The added points inherit the 
normal of the current triangle. The colours of the added points are determined by bilinear sampling 
of the texture map 𝑇. The texture coordinates used for the bilinear sampling are computed by 
barycentric interpolation of the texture coordinates of the triangle vertices. 

Geometry quality metrics 
The description of the performance indicators d1PSNR and d2PSNR is based on the reference 
document [10]. Let A and B denote the original and the compressed point cloud, respectively, 
obtained after the sampling stage described above. The compression errors in point cloud B relative 
to the original point cloud A are evaluated.  
The d1 point-to-point error evaluates the distance between two points. The evaluation is achieved 
in a two-pass computation. In each pass, one point cloud is selected as reference, e.g. when 
computing d1(A,B), A serves as a reference, and vice versa. In the end, the lowest value among 
d1(A,B) and d1(B,A) is selected as the final measurement. The following algorithm is applied: 

1. For each point 𝑎2 in point cloud A, identify a corresponding point 𝑏2 in point cloud B. The 
nearest neighbour is used to locate the corresponding point.  

2. Take the unit normal vector 𝑁2 on point 𝑎2 in the reference point cloud A.  
3. Compute the error vector 𝐸(𝑖, 𝑗) by connecting point 𝑎2 to point 𝑏!. The length of the error 

vector leads to the d1 point-to-point error, i.e.  



 50 

𝑑1(,3 =
1
𝑁(

N ‖𝐸(𝑖, 𝑗)‖44
∀0!∈(

,  

where 𝑁( is the number of points in point cloud A.  

Both 𝑑1(,3 and 𝑑13,( are computed. The corresponding MSE is converted into PSNR, to produce 
the final d1PSNR metric, using the max value of 𝑑1(,3 and 𝑑13,(: 

𝑑1𝑃𝑆𝑁𝑅 = 10 log*% V
6"

-0178*#,%,8*%,#9
W. 

The diagonal distance of a bounding box of the point cloud A is used to define the peak value p. 
The d2PSNR point-to-plane metric computes the sum of the squared distance between a point and 
the tangent plane at its correspondence point. From the third step of the d1PSNR computation, the 
following algorithm is applied: From the third step of the d1PSNR computation, the following 
algorithm is applied: 

1. Get point-to-plane errors by projecting the error vector 𝐸(𝑖, 𝑗) along the normal direction 
𝑁2 to get a new error vector 𝐸(𝑖, 𝑗) ∙ 𝑁2. The point-to-plane error is finally computed as: 

𝑑2(,3 =
*
:#
∑ Z𝐸(𝑖, 𝑗) ∙ 𝑁2Z4

4
∀0!∈( . 

Both 𝑑2(,3 and 𝑑23,( are computed. The corresponding MSE is converted into PSNR, to produce 
the final d2PSNR metric, using the max value of 𝑑2(,3 and 𝑑23,(: 

𝑑2𝑃𝑆𝑁𝑅 = 10 log*% V
6"

-01784#,%,84%,#9
W. 

Texture quality metrics 
After conversion of the point colours from the RGB space to the YUV BT.709 space, the MSE of 
each of the three colour components luma, cb, cr is computed, and noted lumaMSE, cbMSE and 
crMSE. The lumaPSNR is obtained with: 

𝑙𝑢𝑚𝑎𝑃𝑆𝑁𝑅 = 10 log*% ^
4;;"

<=-0>?@
_, 

and the cbPSNR and crPSNR are obtained by replacing lumaMSE by cbMSE and crMSE, 
respectively. 
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Annex L: Quality targets and lossy anchor results 
According to the rules defined in section 8, responses to the CfP must match pre-defined target 
qualities. This annex explains how the target qualities were selected, and what are the coding 
configurations that yield to these target qualities, for the anchor. 
The encoding of the meshes is performed with different coding configurations, made of 
combinations of decRatio, qpDraco, qtDraco parameters. Multiple configurations were tested to 
find the best match with the requirements listed below. The tested parameters were the following: 

• Decimation parameters: decRatio = [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80, 1.00]. 
• Quantization parameters for Draco: [qpDraco, qtDraco] = [[15,14], [14, 13], [13, 12], 

[12,11], [11, 10], [10, 9], [9, 8], [8, 7], [7,6], [6,5], [5,4]]. 
• Compression levels for AV1: cq-level = [8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63]. 

The selection depends on the type of meshes: 

• For objects without texture, the selection is made using the point-to-plane d2PSNR metric. 
The four selected configurations meet the following constraints (in this order of priority): 
1- they are located on the convex hull obtained from the different test points, 2- their 
d2PSNR quality is close to target qualities 65, 72, 79, and 86. 

• For objects with texture, that are part of the viewing set, the four selected configurations 
meet the following constraints (in this order of priority): 1- they are located on the convex 
hull obtained from the different test points, 2- their quality is in a range of acceptable visual 
quality, for practical mesh-based services, 3- their quality is reasonably spread in the range 
of acceptable visual quality. 

• For objects with texture, that are not part of the viewing test, the selection relies on the 
following principles: 1- the configuration for the lowest quality is set to decRatio=0.10, 
qpDraco=9, qtDraco=8, cq-level=63. This configuration corresponds to the average 
configuration selected for TQ4 during the subjective viewing dry-run, applied on the 
viewing set.  2- the configuration for the highest quality (TQ1) is set to decRatio=1.00, 
qpDraco=12, qtDraco=11, cq-level=38. This configuration corresponds to the average 
configuration selected for TQ1 during the subjective viewing dry-run, applied on the 
viewing set.   

Table 5 reports for each object without texture, the selected configuration for each target quality, 
as well as the d2PSNR quality of the anchor that becomes the target quality for the CfP responses. 
The achieved file sizes of the anchor (size of geometry and connectivity information) are available 
in the VVM template for lossy scenario excel sheet, in the “anchor” tab. 
Table 6 reports for each object with texture, the selected configurations, the target lumaPSNR 
quality, the achieved lumaPSNR quality of the anchor that becomes the target for the CfP 
responses, the achieved file size of the anchor (size of geometry, connectivity, mapping 
information, and the size of the texture attribute map). 
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Mesh Name  TQ d2PSNR decRatio qpDraco qtDraco 

chair_swan TQ4 83.4 0.20 12 11 

chair_swan TQ3 76.3 0.10 11 10 

chair_swan TQ2 69.3 0.10 8 7 

chair_swan TQ1 63.7 0.10 7 6 

cup_saucer_set TQ4 83.6 0.30 11 10 

cup_saucer_set TQ3 78.9 0.20 10 9 

cup_saucer_set TQ2 70.3 0.10 8 7 

cup_saucer_set TQ1 63.6 0.10 7 6 

flower_tulip TQ4 85.0 0.20 12 11 

flower_tulip TQ3 76.6 0.10 10 9 

flower_tulip TQ2 73.0 0.10 9 8 

flower_tulip TQ1 62.3 0.10 7 6 

gramophone TQ4 83.5 0.10 12 11 

gramophone TQ3 80.1 0.10 10 9 

gramophone TQ2 73.0 0.10 9 8 

gramophone TQ1 62.9 0.10 7 6 

teapot TQ4 85.7 0.20 11 10 

teapot TQ3 78.4 0.10 10 9 

teapot TQ2 70.2 0.10 8 7 

teapot TQ1 64.9 0.10 7 6 

toy_bitplane TQ4 84.1 0.40 11 10 

toy_bitplane TQ3 76.3 0.20 11 10 

toy_bitplane TQ2 69.4 0.10 10 9 

toy_bitplane TQ1 62.6 0.10 7 6 

toy_car TQ4 83.6 0.40 12 11 
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toy_car TQ3 77.0 0.30 10 9 

toy_car TQ2 69.1 0.10 11 10 

toy_car TQ1 65.7 0.10 8 7 

toy_drummer TQ4 83.5 0.40 12 11 

toy_drummer TQ3 76.6 0.30 10 9 

toy_drummer TQ2 71.9 0.20 9 8 

toy_drummer TQ1 65.0 0.10 8 7 

toy_robot_vintage TQ4 83.3 0.30 11 10 

toy_robot_vintage TQ3 77.8 0.20 10 9 

toy_robot_vintage TQ2 70.7 0.10 9 8 

toy_robot_vintage TQ1 66.7 0.10 8 7 

tv_retro TQ4 85.6 0.10 11 10 

tv_retro TQ3 81.4 0.10 10 9 

tv_retro TQ2 69.4 0.10 8 7 

tv_retro TQ1 62.1 0.10 7 6 

wateringcan TQ4 83.3 0.20 11 10 

wateringcan TQ3 80.4 0.20 10 9 

wateringcan TQ2 72.3 0.10 9 8 

wateringcan TQ1 64.6 0.10 7 6 

Table 5: Selected configurations, including the initial target quality, the achieved quality of the 
anchor, the achieved file size of the anchor, for each object without texture.  
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Mesh Name  TQ lumaPSNR decRatio qpDraco qtDraco cq-level 

apollo_11 TQ4 32.1 1.00 13 12 33 

apollo_11 TQ3 30.5 1.00 13 12 43 

apollo_11 TQ2 26.6 1.00 11 10 53 

apollo_11 TQ1 20.1 0.10 9 8 63 

apollo_11 TQ0 15.6 0.10 7 6 63 

apothecary_vase TQ4 31.1 1.00 12 11 53 

apothecary_vase TQ3 26.3 0.10 12 11 58 

apothecary_vase TQ2 24.1 0.10 10 9 63 

apothecary_vase TQ1 19.2 0.10 8 7 63 

apothecary_vase TQ0 16.9 0.10 7 6 63 

armillary_sphere_1771 TQ4 33.6 1.00 12 11 38 

armillary_sphere_1771 TQ3 30.9 0.20 13 12 48 

armillary_sphere_1771 TQ2 28.9 0.10 11 10 53 

armillary_sphere_1771 TQ1 25.8 0.10 9 8 63 

buste_cuirasse_de_marc_aurele_age TQ4 35.1 1.00 11 10 28 

buste_cuirasse_de_marc_aurele_age TQ3 31.2 0.30 10 9 43 

buste_cuirasse_de_marc_aurele_age TQ2 29.4 0.10 10 9 53 

buste_cuirasse_de_marc_aurele_age TQ1 27.4 0.10 9 8 58 

buste_cuirasse_de_marc_aurele_age TQ0 22.1 0.10 7 6 63 

butterflies_collection TQ4 28.9 1.00 12 11 38 

butterflies_collection TQ3 27.3 0.10 12 11 58 

butterflies_collection TQ2 22.0 0.10 10 9 63 

butterflies_collection TQ1 18.7 0.10 9 8 63 

candle_stick TQ4 34.9 1.00 12 11 38 
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candle_stick TQ3 33.1 0.30 13 12 48 

candle_stick TQ2 30.2 0.10 11 10 58 

candle_stick TQ1 27.5 0.10 9 8 63 

cela_ruins_of_a_nuns_cell TQ4 33.9 1.00 12 11 38 

cela_ruins_of_a_nuns_cell TQ3 32.1 0.20 13 12 48 

cela_ruins_of_a_nuns_cell TQ2 29.4 0.10 11 10 58 

cela_ruins_of_a_nuns_cell TQ1 26.2 0.10 9 8 63 

creature_box_squid TQ4 30.6 1.00 12 11 38 

creature_box_squid TQ3 29.1 1.00 12 11 48 

creature_box_squid TQ2 25.7 1.00 9 8 63 

creature_box_squid TQ1 23.3 0.10 9 8 63 

cyber_samurai TQ4 28.5 1.00 12 11 38 

cyber_samurai TQ3 25.6 0.40 12 11 48 

cyber_samurai TQ2 21.4 0.20 11 10 63 

cyber_samurai TQ1 17.8 0.10 9 8 63 

dead_rose_smallCCremoved TQ4 33.6 1.00 12 11 43 

dead_rose_smallCCremoved TQ3 30.3 0.60 12 11 53 

dead_rose_smallCCremoved TQ2 26.9 0.30 10 9 58 

dead_rose_smallCCremoved TQ1 23.1 0.20 8 7 63 

dead_rose_smallCCremoved TQ0 17.5 0.10 6 5 63 

electrodynamic TQ4 34.9 1.00 12 11 38 

electrodynamic TQ3 33.2 0.20 13 12 48 

electrodynamic TQ2 30.8 0.10 10 9 53 

electrodynamic TQ1 28.3 0.10 9 8 63 

frederic_fr00001 TQ4 36.1 1.00 11 10 48 

frederic_fr00001 TQ3 34.7 0.40 12 11 53 
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frederic_fr00001 TQ2 31.1 0.30 11 10 63 

frederic_fr00001 TQ1 28.3 0.10 9 8 63 

frederic_fr00001 TQ0 23.5 0.10 7 6 63 

green_tree_frog TQ4 26.6 1.00 12 11 38 

green_tree_frog TQ3 22.5 0.20 12 11 63 

green_tree_frog TQ2 19.6 0.20 10 9 63 

green_tree_frog TQ1 17.1 0.10 9 8 63 

grey_knight TQ4 30.8 1.00 12 11 43 

grey_knight TQ3 28.3 0.60 12 11 58 

grey_knight TQ2 26.1 0.60 11 10 63 

grey_knight TQ1 22.7 0.10 9 8 63 

grey_knight TQ0 19.7 0.10 6 5 63 

heilig_grab_kapelle TQ4 31.4 1.00 12 11 38 

heilig_grab_kapelle TQ3 29.4 0.20 12 11 48 

heilig_grab_kapelle TQ2 25.8 0.20 10 9 63 

heilig_grab_kapelle TQ1 24.6 0.10 9 8 63 

heliostat TQ4 36.0 1.00 12 11 38 

heliostat TQ3 34.4 0.20 12 11 48 

heliostat TQ2 29.8 0.10 10 9 58 

heliostat TQ1 26.9 0.10 9 8 63 

hussar_on_horseback TQ4 32.0 1.00 12 11 43 

hussar_on_horseback TQ3 28.7 0.60 11 10 58 

hussar_on_horseback TQ2 26.9 0.10 11 10 63 

hussar_on_horseback TQ1 24.6 0.10 8 7 63 

hussar_on_horseback TQ0 21.3 0.10 7 6 63 

japanese_spiny_lobster TQ4 26.3 1.00 12 11 38 
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japanese_spiny_lobster TQ3 23.8 1.00 12 11 58 

japanese_spiny_lobster TQ2 20.8 1.00 11 10 63 

japanese_spiny_lobster TQ1 16.1 0.10 9 8 63 

just_a_girl TQ4 27.5 1.00 12 11 38 

just_a_girl TQ3 24.2 0.80 12 11 63 

just_a_girl TQ2 16.8 0.40 12 11 58 

just_a_girl TQ1 14.2 0.10 9 8 63 

levi_fr00000 TQ4 41.2 1.00 12 11 38 

levi_fr00000 TQ3 37.2 0.80 11 10 53 

levi_fr00000 TQ2 32.8 0.60 11 10 63 

levi_fr00000 TQ1 25.7 0.10 9 8 63 

luna_lionfish TQ4 28.7 1.00 13 12 48 

luna_lionfish TQ3 25.4 1.00 12 11 58 

luna_lionfish TQ2 23.7 1.00 11 10 53 

luna_lionfish TQ1 21.7 1.00 11 10 63 

luna_lionfish TQ0 18.6 1.00 10 9 63 

marble_mortar TQ4 34.7 1.00 12 11 38 

marble_mortar TQ3 33.9 0.40 11 10 38 

marble_mortar TQ2 31.8 0.10 10 9 53 

marble_mortar TQ1 30.3 0.10 9 8 63 

mira_w_gun TQ4 29.3 1.00 12 11 58 

mira_w_gun TQ3 26.9 1.00 11 10 63 

mira_w_gun TQ2 24.3 0.30 10 9 63 

mira_w_gun TQ1 23.3 0.20 10 9 63 

mira_w_gun TQ0 18.4 0.10 7 6 63 

mitch_fr00001 TQ4 32.4 1.00 12 11 38 
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mitch_fr00001 TQ3 30.8 0.60 13 12 48 

mitch_fr00001 TQ2 28.7 0.20 11 10 58 

mitch_fr00001 TQ1 26.6 0.10 9 8 63 

motorcycle TQ4 37.1 1.00 12 11 38 

motorcycle TQ3 33.3 0.60 11 10 58 

motorcycle TQ2 29.0 0.40 9 8 63 

motorcycle TQ1 22.8 0.10 9 8 63 

nathalie_fr00036 TQ4 28.8 1.00 11 10 58 

nathalie_fr00036 TQ3 27.9 0.20 11 10 58 

nathalie_fr00036 TQ2 26.8 0.10 10 9 63 

nathalie_fr00036 TQ1 25.5 0.10 8 7 63 

nathalie_fr00036 TQ0 23.6 0.10 7 6 63 

orbiter_space_shutter TQ4 27.5 1.00 13 12 53 

orbiter_space_shutter TQ3 23.7 0.80 11 10 63 

orbiter_space_shutter TQ2 22.4 0.30 11 10 63 

orbiter_space_shutter TQ1 21.0 0.20 10 9 63 

orbiter_space_shutter TQ0 19.4 0.20 9 8 63 

piggy_bank TQ4 34.5 1.00 12 11 38 

piggy_bank TQ3 33.2 0.40 12 11 38 

piggy_bank TQ2 30.9 0.20 13 12 53 

piggy_bank TQ1 28.2 0.10 9 8 63 

police_station TQ4 27.0 0.80 12 11 38 

police_station TQ3 23.7 0.20 11 10 53 

police_station TQ2 22.8 0.10 11 10 58 

police_station TQ1 19.6 0.10 9 8 63 

police_station TQ0 16.9 0.10 8 7 63 
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promo_ashtray TQ4 41.1 1.00 12 11 38 

promo_ashtray TQ3 38.0 0.20 12 11 48 

promo_ashtray TQ2 34.6 0.10 11 10 58 

promo_ashtray TQ1 30.0 0.10 9 8 63 

rafa_fr00001 TQ4 38.0 1.00 12 11 38 

rafa_fr00001 TQ3 36.2 0.80 12 11 48 

rafa_fr00001 TQ2 31.8 0.30 11 10 58 

rafa_fr00001 TQ1 27.5 0.10 9 8 63 

sakura_cherry_blossom TQ4 28.6 1.00 12 11 38 

sakura_cherry_blossom TQ3 26.1 1.00 12 11 58 

sakura_cherry_blossom TQ2 20.7 0.20 11 10 58 

sakura_cherry_blossom TQ1 14.6 0.10 9 8 63 

stereoscopic_cam TQ4 32.0 1.00 12 11 43 

stereoscopic_cam TQ3 30.2 0.20 12 11 53 

stereoscopic_cam TQ2 29.1 0.10 11 10 58 

stereoscopic_cam TQ1 27.7 0.10 9 8 63 

stereoscopic_cam TQ0 25.0 0.10 7 6 63 

the_great_drawing_room TQ4 26.5 1.00 12 11 38 

the_great_drawing_room TQ3 24.5 0.30 12 11 43 

the_great_drawing_room TQ2 22.4 0.10 12 11 53 

the_great_drawing_room TQ1 19.6 0.10 9 8 63 

the_serving_room TQ4 22.1 1.00 12 11 38 

the_serving_room TQ3 19.5 0.20 13 12 48 

the_serving_room TQ2 16.6 0.10 11 10 58 

the_serving_room TQ1 12.4 0.10 9 8 63 

thomas_fr00170 TQ4 34.4 1.00 12 11 38 
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thomas_fr00170 TQ3 32.7 0.40 12 11 48 

thomas_fr00170 TQ2 30.5 0.20 10 9 58 

thomas_fr00170 TQ1 28.5 0.10 9 8 63 

violin TQ4 38.3 1.00 12 11 38 

violin TQ3 36.8 0.30 13 12 43 

violin TQ2 33.8 0.10 11 10 58 

violin TQ1 31.2 0.10 9 8 63 

ware_bowl TQ4 36.6 1.00 12 11 38 

ware_bowl TQ3 33.4 0.20 12 11 48 

ware_bowl TQ2 30.3 0.10 12 11 58 

ware_bowl TQ1 25.3 0.10 9 8 63 

winter_girl TQ4 26.8 1.00 12 11 38 

winter_girl TQ3 23.6 0.80 11 10 58 

winter_girl TQ2 20.4 0.60 10 9 63 

winter_girl TQ1 14.5 0.10 9 8 63 

wiz_boots TQ4 35.7 1.00 12 11 38 

wiz_boots TQ3 34.5 0.30 12 11 43 

wiz_boots TQ2 30.8 0.10 10 9 53 

wiz_boots TQ1 28.4 0.10 9 8 63 

wooden_gramophone TQ4 34.9 1.00 12 11 38 

wooden_gramophone TQ3 34.0 0.30 12 11 43 

wooden_gramophone TQ2 31.0 0.10 10 9 53 

wooden_gramophone TQ1 28.8 0.10 9 8 63 

zakopane_chair TQ4 29.6 0.20 13 12 53 

zakopane_chair TQ3 26.9 0.10 10 9 63 

zakopane_chair TQ2 25.6 0.10 8 7 63 
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zakopane_chair TQ1 24.3 0.10 7 6 63 

zakopane_chair TQ0 22.2 0.10 6 5 63 

Table 6: Selected configurations, including the initial target quality, the achieved quality of the 
anchor, the achieved file size of the anchor, for each object with texture. 
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Annex M: Encoding and decoding logs 
Figure 14 and Figure 15 show the format and the information reported in the encoding and 
decoding logs. 
The total byte count (i.e. “total_byte_count”) corresponds to the total compressed bitstream size in 
bytes. The total encoding (i.e. “total_encoding_time”) and the total decoding time (i.e. 
“total_decoding_time”) correspond to the time needed to encode and decode (excluding any IO 
operations) all the mesh components in milliseconds, respectively. The triangle count (i.e. 
“triangle_count”) corresponds to the number of triangles in the decoded mesh. If the decoded mesh 
contains non-triangular faces, the number of triangles obtained after the non-triangular faces are 
triangulated is reported. 
The array attributes shall contain the statistics associated with each mesh component (e.g. 
positions, texture coordinates, normal, and texture map): 

• byte count (i.e. “byte_count”) corresponds to the compressed bitstream size in bytes needed 
to encode the considered component. 

• encoding (i.e. “encoding_time”) and the decoding time (i.e. “decoding_time”) correspond to the 
time needed to encode and decode (excluding any IO operations) the considered mesh 
component in milliseconds, respectively. 

For corner attributes, the byte count and encoding and decoding time consider both the attribute 
values and indices. 
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{ 

    "encoding_stats": { 

        "attributes": [ 

            { 

                "byte_count": 268388, 

                "encoding_time": 150.262, 

                "type": "POSITION" 

            }, 

            { 

                "byte_count": 113496, 

                "encoding_time": 18.419, 

                "type": "TEX_COORD" 

            }, 

            { 

                "byte_count": 324575, 

                "encoding_time": 14.609, 

                "type": "NORMAL" 

            }, 

            { 

                "byte_count": 0, 

                "encoding_time": 0, 

                "type": "TEX_MAP" 

            } 

        ], 

        "total_byte_count": 706459, 

        "total_encoding_time": 183.365, 

    } 

Figure 14: Encoding log format and required information. 
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{ 

    "decoding_stats": { 

        "attributes": [ 

            { 

                "decoding_time": 0.6125, 

                "type": "NORMAL" 

            }, 

            { 

                "decoding_time": 1.1925, 

                "type": "TEX_COORD" 

            }, 

            { 

                "decoding_time": 2.860, 

                "type": "POSITION" 

            }, 

            { 

                "decoding_time": 0, 

                "type": "TEX_MAP" 

            } 

        ], 

        "total_decoding_time": 4.665 

        "triangle_count": 15001 

    } 

} 

Figure 15: Decoding log format and required information. 


